

Very High Energy Gamma-Ray Astronomy and the search for PeVatrons

Heide Costantini Aix-Marseille Université-CPPM

• Gamma-rays are produced in the most extreme enviroments of the Universe

relativistic jets produced by massive and supermassive black holes *(Micro-quasar, quasar, AGN)*

SuperNova Remnants

Gamma Ray Bursts

• Gamma-rays can be used to explore the Frontiers in Physics

dark matter annihilation signature

quantum gravity effects in photon propagation

Cosmic rays with energy below the Knee ($E < 10^{15} eV$) are thought to be of Galactic origin

Balloon and

Sources of very high energy photons (>100 TeV) are good PeVatron candidates

Fermi/LAT

- Energy range: 20 MeV 300 GeV
- Angular resolution : 3.5° (100 MeV) 0.15° (100 GeV)
- Large Field of view

Detection techniques on the ground

Imaging Air Cherenkov Telescopes; IACT

Detection techniques on the ground

PUMA22-29 September 2022

~250 sources detected in the TeV energy band

TeVCat catalog: http://tevcat.uchicago.edu/

Different types of sources:

particle acceleration and transport in different astrophysical conditions and environments

Continuous increase of detected sources:

Steep increase correlated with start of new instruments data taking

Cosmic ray sources in the Galaxy

 $E_{\gamma} \simeq 0.1 E_{p}$

Are SuperNovaRemnants PeVatrons?

CR Energy density ~1 eV/cm3 is equal to 10% of SNR total explosion energy

The beginning of UHE gamma-astrophysics

LHAASO: emission at $E_{\gamma} > 100 \text{ TeV}$

Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources

Zhen Cao ⊠, F. A. Aharonian ⊠, [...]X. Zuo

Nature 594, 33-36 (2021) Cite this article

PUMA22-29 September 2022

Aix+Marseille

LHAASO Source	Possible Origin	Туре	Distance (kpc)	Age (kyr) ^a	$L_s (erg/s)^b$	Potential TeV Counterpart ^c
LHAASO J0534+2202	PSR J0534+2200	PSR	2.0	1.26	4.5×10^{38}	Crab, Crab Nebula
LHAASO J1825-1326	PSR J1826-1334	PSR	3.1 ± 0.2^d	21.4	2.8×10^{36}	HESS J1825-137, HESS J1826-130,
	PSR J1826-1256	PSR	1.6	14.4	$3.6 imes 10^{36}$	2HWC J1825-134
LHAASO J1839-0545	PSR J1837-0604	PSR	4.8	33.8	2.0×10^{36}	2HWC J1837-065, HESS J1837-069,
	PSR J1838-0537	PSR	1.3^{e}	4.9	$6.0 imes 10^{36}$	HESS J1841-055
LHAASO J1843-0338	SNR G28.6-0.1	SNR	9.6 ± 0.3^{f}	$< 2^{f}$		HESS J1843-033, HESS J1844-030,
						2HWC J1844-032
LHAASO J1849-0003	PSR J1849-0001	PSR	7^{g}	43.1	9.8×10^{36}	HESS J1849-000, 2HWC J1849+001
	W43	YMC	5.5^{h}	—		
LHAASO J1908+0621	SNR G40.5-0.5	SNR	3.4^{i}	$\sim 10 - 20^{j}$		MGRO J1908+06, HESS J1908+063,
	PSR 1907+0602	PSR	2.4	19.5	2.8×10^{36}	ARGO J1907+0627, VER J1907+062,
	PSR 1907+0631	PSR	3.4	11.3	5.3×10^{35}	2HWC 1908+063
LHAASO J1929+1745	PSR J1928+1746	PSR	4.6	82.6	1.6×10^{36}	2HWC J1928+177, 2HWC J1930+188,
	PSR J1930+1852	PSR	6.2	2.9	1.2×10^{37}	HESS J1930+188, VER J1930+188
	SNR G54.1+0.3	SNR	$6.3^{+0.8}_{-0.7}$ d	$1.8 - 3.3^k$		
LHAASO J1956+2845	PSR J1958+2846	PSR	2.0	21.7	3.4×10^{35}	2HWC J1955+285
	SNR G66.0-0.0	SNR	2.3 ± 0.2^d	_		
LHAASO J2018+3651	PSR J2021+3651	PSR	$1.8^{+1.7 l}_{-1.4}$	17.2	3.4×10^{36}	MGRO J2019+37, VER J2019+368,
	Sh 2-104	H II/YMC	$3.3\pm 0.3^m\!/\!4.0\pm 0.5^n$	_		VER J2016+371
LHAASO J2032+4102	Cygnus OB2	YMC	1.40 ± 0.08^{o}	_	_	TeV J2032+4130, ARGO J2031+4157,
	PSR 2032+4127	PSR	1.40 ± 0.08^o	201	1.5×10^{35}	MGRO J2031+41, 2HWC J2031+415,
	SNR G79.8+1.2	SNR candidate		_		VER J2032+414
LHAASO J2108+5157	<u></u>		—	_		—
LHAASO J2226+6057	SNR G106.3+2.7	SNR	0.8^{p}	$\sim 10^p$		VER J2227+608, Boomerang Nebula
	PSR J2229+6114	PSR	0.8^{p}	$\sim 10^p$	2.2×10^{37}	

Uncertain nature of sources due to poor angular resolution:

- > Only one source clearly identified: the Crab!
- Not many SNRs
- Many PSRs (large PSF of LHAASO)
- 2 young massive SC

15

10

[PeV]

ц

0.1

PUMA22-29 September 2022

•

•

potential drop

Α Maximum efficiency 10-8 Crab LHAASO maximum energy N157B 10⁻¹⁰ 10 EdN/dE (cm⁻² s⁻¹) J1925+1720 |1907+060210⁻¹² 11826-1256 11954+2836 |2229+6114|1928+1746 12032+4127 10⁻¹³ 1838-0537 Ee max [PeV] 10-14 11958+2846 10^{-15} |1841-0345 10⁻¹⁶ 11849-0001 HAASO log-parabola mode 10⁻¹⁷ LHAASO power-law model @>10 Te\ J1844-0346 в Geminga Crab -2.5 Index 1907+0631 0.1 B1823-13 -3.5 J1837-Ó604 12021+3651 1034 1035 1036 1038 1039 10^{3} 10^{3} 10^{2} 10^{-1} 10 Energy (TeV) 1 Ė [erg/s]

Theoretically PWNe can be hadronic PeVatrons as well

LHAASO Coll, 2021, Science, vol. 373, pp.425-430

The Crab: a leptonic PeVatron?

dominated by IC in the case of intense radiation fields)

Leptonic origin of gamma-rays > 100 TeV is possible (energy losses

de Oña Wilhelmi+ 2022 ApJL 930 1 L2

PeVatron candidate: The Boomerang (G106.3+2.7)

- Comet shape SNR with head and tail seen in radio continuum.
- Powerful Pulsar in the head region
- Correlation with molecular clouds
- VHE emission detected by Fermi, VERITAS [2009], HAWC [2020], Tibet As γ [2021].
- UHE emission detected by LHAASO.
- Both leptonic and hadronic emission can explain the data.

• Energy dependent morphology measured by MAGIC

MAGIC Coll. T. Saito Gamma 2022

0.25

0.2

0.15

0.1

0.05

• HAWC starts to see 2 components as well

P. Huentemeyer, ECRS 2022

Precise VHE observations in a large energy range are required to resolve the head and tail emissions

PUMA22-29 September 2022

PeVatron candidates: The Cygnus Cocoon

• superbubble surrounding a region of OB2 massive star formation.

- 1.4 PeV gamma measured by LHAASO
- Spectral shape and emission profile changes from GeV to TeV energies
- Likely of hadronic nature

Aix+Marseille

Future instruments:

- Better sensitivity
- Larger energy range
- Better precision
- Full sky coverage
- Both Cherenkov and EAS telescopes needed

Best sensitivity in **50 GeV – 10 TeV** Energy region

Best angular resolution for E > 100 GeV

PUMA22-29 September 2022

CTA Galactic Plane Survey

- Increase in source counts by ~5 with respect to HESS GPS or 3HAWC catalogue
- Detect sources across the entire Galaxy

cherenkov telescope arrav Remy et al. PoS(ICRC2021)886

 $E_{c, \gamma}$ = 200 TeV cutoff detection probability with Full CTA South array

Observation with SST array only (moonlight) HESS J1641-463 with $E_{c, \gamma}$ = 100 TeV

CTA Consortium: In preparation

Limited Capability with CTA GPS data

cherenkov telescope

- Deep observations can be done during moonlight to increase statistics at VHE
- Excellent prospects to find PeVatrons (UHE cutoffs) with deep observations

Follow-up of PeVatron candidates

The Boomerang (G106.3+2.7)

• Large energy coverage to constrain spectral models

G. Verna et al PoS(ICRC2021)904

Precise morphological studies of emission sites

cherenkov telescope

- Construction ahead of CTAO ERIC constitution
- LST-1 first telescope at CTA-North site
 - LST-1 is in commissioning
 - Performance paper to be published soon
 - First scientific results (including Novae, AGNs etc.)

- $\circ~$ LHAASO J2108+5157 is the first gamma-ray source directly discovered in the UHE band
- $\circ~$ 91 h observation: no detection, but relevant upper limits

Juryšek Gamma 2022 aper in preparation

Future instruments:

- Better sensitivity
- Larger energy range
- Better precision
- Full sky coverage
- Both Cherenkov and EAS telescopes needed

The Southern Wide Field Gamma-ray Observatory : SWGO

- Extended Air Shower Detector in the Southern Hemisphere
- PeVatron Hunter in the South!
- Complementary to CTA-South
- R&D phase: construction starts 2026+

- VHE gamma-ray astronomy has become a major exciting field of research which addresses a wide, and expanding, range of astrophysical topics
- Gamma rays can shed light on the origin of cosmic rays
- UHE gamma-ray astronomy has begun !
- Present results demonstrate the importance of complementary instrumental approaches in gamma-ray astronomy
- Future observatories will improve significantly our understanding of the high energy Universe with a large potential for new discoveries