

Cosmology with the SKA Observatory

Atefano Camera

Department of Physics, Alma Felix University of Turin, Italy

• The SKA Observatory (Inter-Governmental Organisation) was born on 15th Jan 2021!

-, CUI

to the SKAO

ganisation, p

SKA Partners and SKAO Obs

SKA-Low Site, Murchison, Western Australia

Cosmology with the SKA Observatory 26 • IX • 202

• The SKA (formerly known as 'Square Kilometre Array') will be the largest radiotelescope on Earth and will be built in two locations

50 MHz

Location: Australia

Location: South Africa

50 MHz

SKA1 LOW - the SKA's low-frequency instrument

The Square Kilometre Array (SKA) will be the world's largest radio telescope, revolutionising our understanding of the Universe. The SKA will be built in two phases - SKA1 and SKA2 starting in 2018, with SKA1 representing a fraction of the full SKA. SKA1 will include two instruments - SKA1 MID and SKA1 LOW - observing the Universe at different frequencies.

Location: South Africa

50 MHz

SKA1 LOW - the SKA's low-frequency instrument

The Square Kilometre Array (SKA) will be the world's largest radio telescope, revolutionising our understanding of the Universe. The SKA will be built in two phases - SKA1 and SKA2 starting in 2018, with SKA1 representing a fraction of the full SKA. SKA1 will include two instruments - SKA1 MID and SKA1 LOW - observing the Universe at different frequencies.

iare Kilometre Array 💆 @SKA

Location: South Africa

50 MHz

SKA1 LOW - the SKA's low-frequency instrument

The Square Kilometre Array (SKA) will be the world's largest radio telescope, revolutionising our understanding of the Universe. The SKA will be built in two phases - SKA1 and SKA2 - starting in 2018, with SKA1 representing a fraction of the full SKA. SKA1 will include two instruments - SKA1 MID and SKA1 LOW - observing the Universe at different frequencies.

are Kilometre Array

🕑 @SKA_telessope 🖓 YouTube The Square Kilometre Array

DI 14 GHz

SKA1-mid - the SKA's mid-frequency instrument

The Square Kilometre Array (SKA) is a next-generation radio astronomy facility that will revolutionise our understanding of the Universe. It will have a uniquely distributed character: **one** observatory operating **two** telescopes on **three** continents. Construction of the SKA will be phased and work is currently focused on the first phase named SKA1, corresponding to a fraction of the full SKA. SKA1 will include two instruments – SKA1-mid and SKA1-low – observing the Universe at different frequencies.

50 MHz

SKA1 LOW - the SKA's low-frequency instrument

The Square Kilometre Array (SKA) will be the world's largest radio telescope, revolutionising our understanding of the Universe. The SKA will be built in two phases - SKA1 and SKA2 - starting in 2018, with SKA1 representing a fraction of the full SKA. SKA1 will include two instruments - SKA1 MID and SKA1 LOW - observing the Universe at different frequencies.

uare Kilometre Array 💆 @SKA_telescope 🎗 You Tube The Square Kilometre Array

DI 14 GHz

SKA1-mid - the SKA's mid-frequency instrument

The Square Kilometre Array (SKA) is a next-generation radio astronomy facility that will revolutionise our understanding of the Universe. It will have a uniquely distributed character: **one** observatory operating **two** telescopes on **three** continents. Construction of the SKA will be phased and work is currently focused on the first phase named SKA1, corresponding to a fraction of the full SKA. SKA1 will include two instruments – SKA1-mid and SKA1-low – observing the Universe at different frequencies.

SKAO's Mid telescope

. . .

--

ADVANCING ASTROPHYSICS with the SQUARE KILOMETRE ARRAY

VOLUME 1

SKA ORGANISATION

[AASKA PoS(s), 2015]

ADVANCING ASTROPHYSICS with the SKA

VOLUME 2

Major 2020 Construction dates & Operations proposal submitted to SKAO Council

2021 Start of construction activities

[Credits: R. Braun]

SKAO Cosmology

Publications of the Astronomical Society of Australia (2020), **37**, e007, 31 pages doi:10.1017/pasa.2019.51

Research Paper

Cosmology with Phase 1 of the Square Kilometre Array Red Book 2018: Technical specifications and performance forecasts

Square Kilometre Array Cosmology Science Working Group: David J. Bacon¹, Richard A. Battye², Philip Bull³, Stefano Camera^{2,4,5,6}, Pedro G. Ferreira⁷, Ian Harrison^{2,7}, David Parkinson⁸, Alkistis Pourtsidou³, Mário G. Santos^{9,10,11}, Laura Wolz¹², Filipe Abdalla^{13,14}, Yashar Akrami^{15,16}, David Alonso⁷, Sambatra Andrianomena^{9,10,17}, Mario Ballardini^{9,18}, José Luis Bernal^{19,20}, Daniele Bertacca^{21,22}, Carlos A. P. Bengaly⁹, Anna Bonaldi²³, Camille Bonvin²⁴, Michael L. Brown², Emma Chapman²⁵, Song Chen⁹, Xuelei Chen²⁶, Steven Cunnington¹, Tamara M. Davis²⁷, Clive Dickinson², José Fonseca^{9,22}, Keith Grainge², Stuart Harper², Matt J. Jarvis^{7,9}, Roy Maartens^{1,9}, Natasha Maddox²⁸, Hamsa Padmanabhan²⁹, Jonathan R. Pritchard²⁵, Alvise Raccanelli¹⁹, Marzia Rivi^{13,18}, Sambit Roychowdhury², Martin Sahlén³⁰, Dominik J. Schwarz³¹, Thilo M. Siewert³¹, Matteo Viel³², Francisco Villaescusa-Navarro³³, Yidong Xu²⁶, Daisuke Yamauchi³⁴ and Joe Zuntz³⁵

[Bacon, SC et al. (2020)]

SKAO Cosmology

Publications of the Astronomical Society of Australia (2020), **37**, e002, 52 pages doi:10.1017/pasa.2019.42

Review (unsolicited)

Fundamental physics with the Square Kilometre Array

A. Weltman^{1,#}, P. Bull^{2,*}, S. Camera^{3,4,5,*}, K. Kelley^{6,*}, H. Padmanabhan^{7,8,*}, J. Pritchard^{9,*}, A. Raccanelli^{10,*},
S. Riemer-Sørensen^{11,*}, L. Shao^{12,*}, S. Andrianomena^{13,14}, E. Athanassoula¹⁵, D. Bacon¹⁶, R. Barkana¹⁷, G. Bertone¹⁸,
C. Bœhm¹⁹, C. Bonvin²⁰, A. Bosma¹⁵, M. Brüggen²¹, C. Burigana^{22,23,24}, F. Calore^{18,25}, J. A. R. Cembranos²⁶,
C. Clarkson^{1,14,27}, R. M. T. Connors²⁸, Á. de la Cruz-Dombriz²⁹, P. K. S. Dunsby^{29,30}, J. Fonseca³¹, N. Fornengo^{4,32},
D. Gaggero¹⁸, I. Harrison³³, J. Larena¹, Y.-Z. Ma^{34,35,36}, R. Maartens^{14,16}, M. Méndez-Isla²⁹, S. D. Mohanty³⁷, S. Murray³⁸,
D. Parkinson³⁹, A. Pourtsidou^{16,27}, P. J. Quinn⁶, M. Regis^{4,32}, P. Saha^{40,41}, M. Sahlén⁴², M. Sakellariadou⁴³,
J. Silk^{44,45,46,47}, T. Trombetti^{22,23,48}, F. Vazza^{21,22,49}, T. Venumadhav⁵⁰, F. Vidotto⁵¹, F. Villaescusa-Navarro⁵², Y. Wang⁵³,

[Weltman, SC et al. (2020)]

SKAO Cosmology

- Surveys carried out at radio wavelengths:
 - HI-line galaxy surveys
 - Continuum galaxy surveys
 - HI intensity mapping surveys
 - Radio weak lensing surveys
- Multi-wavelength synergies

HI-line galaxies

- Origin: HI (neutral hydrogen) emission line in galaxies
- Pros: spectroscopic redshift accuracy, peculiar velocities
- Cons: few galaxies (faint signal), threshold experiment
- Examples:
 - HIPASS (4.5k galaxies; 5σ detection limit 5.6 Jy km s–1 @ 200 km s–1) • ALFALFA (>20k galaxies; 5σ detection limit 0.72 Jy km s–1 @ 200 km s–1)

HI-line galaxies

- HI-line galaxy surveys are 'Tully-Fisher' surveys
 - measured redshift, gives peculiar velocity of the galaxy.

• The intrinsic luminosity of a galaxy (from 21cm line width) combined with its

HI-line galaxies

Maximum redshift, *z*max

Continuum galaxies

- Origin: synchrotron emission of charged particles within galaxies
- Pros: large number of galaxies (strong signal)
- Cons: (almost) no redshift information
- Examples:
 - VLA FIRST (10k sq. deg.; 900k galaxies)
 - NVSS (>34k sq. deg.; 2M galaxies; I, Q and U polarisation maps)

Continuum galaxies

- Testing the cosmological and the Copernican principles
 - SKAO continuum galaxy angular correlation function will be able to detect dipole:
 - Within 5^o (SKAO)
 - Within 1^o (Futuristic SKAO)

[Schwarz et al. (2015, 2018); Bengaly et al. (2017); Pant et al. (2019); Bengaly, Larena & Maartens (2019)]

[Courtesy of R. Maartens]

- Origin: integrated emission of 21-cm photons in galaxies (after the EoR ends)
- Pros: no photon lost, better than spectroscopic redshift accuracy
- Cons: poor angular resolution, huge foreground contamination
- Examples:
 - GBT (~1 sq. deg. in cross-correlation w/ WiggleZ @ 0.53 < z < 1.12)
 - Parkes (1.3k sq. deg. in cross-correlation w/ 2dFGRS @ 0.057 < z < 0.098)

[Chang et al. (Nature 2010)] (~100 sq. deg. in cross-correlation w/ eBOSS & WiggleZ @ 0.6 < z < 1.0) [Wolz et al. (2021)] [Andeson et al. (2018)] • MeerKAT (~200 sq. deg. in cross-correlation w/ WiggleZ @ 0.400 < z < 0.459) [Cunnington et al. (2022)] • CHIME (three fields stacked against eBOSS LRGs, ELGs, QSOs @ 0.78 < z < 1.43)

Redshift for free:

v_{obs} = 1420 MHz / (1+z)

[Bharadwaj et al. (2001); Battye et al. (2004); Loeb & Whyte (2008)]

[Bacon, SC et al. (2020)]

SKA2 e-to-signal ratio (@ $k \approx 0.074 \, 1/Mpc$) SKA1-LOW ← → SKA1-MID B1 autocorr. SKA1-MID B1 interferom. SKA1-MID B2 10^{-1} 10⁻² Nois 3 0 Redshift, z

SKA2 0.074 1/Mpc) SKA1-LOW SKA1-MID B1 autocorr. SKA1-MID B1 interferom. SKA1-MID B2 10^{-1} e-to-signal ratio (@ $k \approx$ 10⁻² Nois 0 3 Redshift, z

- Sensitivity to ultra-large scale effects
 - Primordial non-Gaussianity (for inflation)
 - Relativistic, light-cone projection effects (for modified gravity)

- Origin: weak lensing shearing of imaged galaxy ellipticities
- Pros: complementary to clustering, insensitive to galaxy bias
- Cons: low signal to noise, needs (?) imaging
- Examples:
 - VLA FIRST (~90 sources per sq. deg. vs to ~10 per sq. arcmin. in opt.)
 - VLA+MERLIN (also in cross-correlation w/ optical shear estimates)

[Chang et al. (Nature 2004)]

[Patel et al. (2010)]

Angular multipole, I

$\gamma^{\rm obs}(z,\vec{\theta}) = \gamma(z,\vec{\theta}) + \gamma^{\rm sys}(z,\vec{\theta})$

 $\gamma^{\rm obs}(z,\vec{\theta}) = \gamma(z,\vec{\theta}) + \gamma^{\rm sys}(z,\vec{\theta})$

$\langle \gamma^{\rm obs} \gamma^{\rm obs} \rangle = \langle \gamma \gamma \rangle + 2 \langle \gamma^{\rm sys} \gamma \rangle + \langle \gamma^{\rm sys} \gamma^{\rm sys} \rangle$

 $\gamma^{\rm obs}(z,\theta) = \gamma(z,\theta) + \gamma^{\rm sys}(z,\theta)$

 $\gamma^{\text{obs}}(z, \theta) = \gamma(z, \theta) + \gamma^{\text{sys}}(z, \theta)$

 $\langle \gamma_{(o)}^{\rm obs} \gamma_{(r)}^{\rm obs} \rangle = \langle \gamma \gamma \rangle + \langle \gamma_{(o)}^{\rm sys} \gamma_{(r)} \rangle + \langle \gamma_{(o)} \gamma_{(r)}^{\rm sys} \rangle + \langle \gamma_{(o)}^{\rm sys} \gamma_{(r)}^{\rm sys} \rangle$

 $\gamma^{\rm obs}(z,\vec{\theta}) = \gamma(z,\vec{\theta}) + \gamma^{\rm sys}(z,\vec{\theta})$

 $\gamma^{\rm obs}(z,\vec{\theta}) = \gamma(z,\vec{\theta}) + \gamma^{\rm sys}(z,\vec{\theta})$

[SC et al. (2015); Bacon, SC et al. (2020)]

[SC et al. (2015); Bacon, SC et al. (2020)]

Towards the SKAO

Precursors

Located at future SKA sites (South Africa and Australia)

Pathfinders

Engaged in SKA related technology and science studies

[Courtesy of A. Bonaldi]

