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Universal content today

Concordance ΛCDM model

u ΛCDM 6-parameter model well established for few 
decades now, thanks to SN1a, CMB, galaxy clustering 
and lensing cosmological probes 

u The origin of recent cosmic acceleration is a mystery
(physical constant, dark energy, modified gravity …?)

u Improved cosmological constrains led to apparent 
tensions between probes
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Observed large-scale structure

u In the late universe, LSS is mostly seen through galaxy spatial distribution and 
gravitational lensing

u The large-scale structure of the Universe evolves through the competing 
effects of universal expansion and structure growth

de Lapparent, Geller, Huchra, 1988

CMB



2dFGRS, Percival et al. 2001 
SDSS, Tegmark et al. 2002
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First constraints from galaxy P(k)

u Galaxy power spectrum full shape 
(linear scales) sensitive to:

h, Wmh2, Wbh2, ns, bs8
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à Directly probe matter fluctuations

à Cosmic shear sensitive to mean matter
density and growth of structure

Figure 1: Left: compilation of recent results of top-hat shear variance measurements from several groups31. Right:
Ωm, σ8 constraints for the Red Sequence Cluster Survey (RCS) from the shear top-hat variance measurements17.

then, several other measurements were done and significant improvements in the data analysis
lead to refined measures and to the first robust cosmological constraints 26,40,32,30,39,17,12,16,2,31.

2 Theory

Gravitational lensing plays a special role in cosmology because it is the only way to see the
dark matter distribution from the galactic scale up to several degrees. It is therefore the only
observational tool which can measure directly the mass power spectrum in the nearby universe
with a direct link to the constituents of the universe simultaneously in the linear and non-linear
dynamical regimes.

The power spectrum of the projected mass, called the convergence power spectrum Pκ(k), is
the quantity which relates any cosmic shear two points statistics to the cosmological parameters
and the 3-dimensional mass power spectrum P3D(k):

Pκ(k) =
9

4
Ω2
0

∫ wH

0

dw

a2(w)
P3D

(

k

fK(w)
;w

) [
∫ wH

w
dw′n(w′)

fK(w′ − w)

fK(w′)

]2

, (1)

where fK(w) is the comoving angular diameter distance out to a distance w (wH is the horizon
distance), and n(w(z)) is the redshift distribution of the sources. The mass power spectrum
P3D(k) is evaluated in the non-linear regime 28, and k is the 2-dimensional wave vector per-
pendicular to the line-of-sight. The three most common observables are respectively the shear
top-hat variance 27,6,21, the aperture mass variance 22,34 and the shear correlation function 27,6,21:

〈γ2〉 =
2

πθ2c

∫

∞

0

dk

k
Pκ(k)[J1(kθc)]

2, (2)

〈M2
ap〉 =

288

πθ4c

∫

∞

0

dk

k3
Pκ(k)[J4(kθc)]

2, (3)

〈γ(r)γ(r + θ)〉r =
1

2π

∫

∞

0
dk kPκ(k)J0(kθ), (4)

where Jn is the Bessel function of the first kind. They are all different measurements of the same
physical quantity, the convergence power spectrum Pκ(k). Their internal consistency provides a
valuable check of the cosmological origin of the observed signal.

Van Vaerbeke et al. 2002 (compilation)

Weak gravitational lensing: cosmic shear

Gravitational lensing



2dFGRS SDSS-I

Cole et al. 2005 Eisenstein et al. 2005
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Baryon Acoustic Oscillations

u First detections of BAO in galaxy clustering, sensitive to: H(z), DA(z)



u Large redshift surveys for 
cosmology (non-exhaustive):

u WiggleZ (Blake et al., 2011)

u SDSS/BOSS (Dawson et al, 2013)

u VIPERS (Guzzo et al. 2014)

u SDSS/BOSS (Dawson et al., 2013)

u SDSS/eBOSS (Dawson et al., 2016)

u More coming in the next years 
(2021-2027): DESI (on-going), 
Euclid, PFS, Roman

Mapping the large-scale 
structure with galaxies



Formal clustering definitions

� =
⇢� ⇢0
⇢0

⇠(r) = h�(x)�(x+ r)i

“probability of seeing structure”, can be recast
in terms of the overdensity 

The correlation function is simply the real-space 
2-pt statistic of the field 

Its Fourier analogue, the power spectrum is 
defined by

P (k) = h�(k)�(k)i

By analogy, one should think of “throwing down” 
Fourier modes rather than “sticks”
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N-point statistics

u Two-point statistics

u The “probability of seeing a structure” can be
casted in terms of the galaxy overdensity:

u The correlation function is simply the real-space
two-point statistic of the galaxy field:

u Its Fourier analogue, the galaxy power spectrum,
is defined as:

u Higher-order statistics
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Biased galaxy formation
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Tidal tensor à Non-localNon-linearitiesLinear bias

Haider et al., 2016

𝛿! = ℱ(𝛿)u Galaxies are biased tracers of the 
underlying density field
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Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fit models overplotted. The vertical dotted lines show
the range of scales fitted (0.02 < k < 0.3hMpc�1), and the inset shows the BAO within this k-range, determined by dividing both model and data by the
best-fit model calculated (including window function convolution) with no BAO. Error bars indicate

p
Cii for the power spectrum and the rms error calculated

from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

an estimate of the “redshift-space” power, binned into bins in k of
width 0.04hMpc�1.

6.2 Fitting the power spectrum

We fit the observed redshift-space power spectrum, calculated as
described in Section 6, with a two component model comprising a
smooth cubic spline multiplied by a model for the BAO, following
the procedure developed by Percival et al. (2007a,c, 2010). The
model power spectrum is given by

P (k)m = P (k)smooth ⇥Bm(k/↵), (32)

where P (k)smooth is a smooth model that fits the overall shape
of the power spectrum, and the BAO model Bm(k), calculated for
our fiducial cosmology, is scaled by the dilation parameter ↵ as
defined in Eq. 21. The calculation of the BAO model is described
in detail below. This scaling of the acoustic signal is identical to
that used in the correlation function fits, although the differing non-
linear prescriptions in (Eqns 23 & 32) means that the non-linear
BAO damping is treated in a subtly different way.

Each power spectrum model to be fitted is convolved with the
survey window function, giving our final model power spectrum to
be compared with the data. The window function for this convolu-
tion is the normalised power in a Fourier transform of the weighted
survey coverage, as defined by the random catalogue, and is calcu-
lated using the same Fourier procedure described in Section 6 (e.g.
Percival et al. 2007c). This is then fitted to express the window
function as a matrix relating the model power spectrum evaluated
at 1000 wavenumbers, kn, equally spaced in 0 < k < 2hMpc�1,
to the central wavenumbers of the observed bandpowers ki:

P (ki)fit =
X

n

W (ki, kn)P (kn)m �W (ki, 0). (33)

The final term W (ki, 0) arises because we estimate the average
galaxy density from the sample, and is related to the integral con-
straint in the correlation function. In fact this term is smooth (as

the power of the window function is smooth), and so can be ab-
sorbed into the smooth component of the fit, and we therefore do
not explicitly include this term in our fits.

To model the overall shape of the galaxy clustering power
spectrum we use a cubic spline (Press et al. 1992), with nine nodes
fixed empirically at k = 0.001, and 0.02 < k < 0.4 with
�k = 0.05, matching that adopted in Percival et al. (2007c, 2010).
This model was tested in these papers, but we show in Section B3
that it also provides an excellent fit to the overall shape of the DR9
CMASS mock catalogues, and that there is no evidence for devia-
tions for the fits to the data.

To calculate our fiducial BAO model, we start with a linear
matter power spectrum P (k)lin, calculated using CAMB (Lewis et
al. 2000), which numerically solves the Boltzman equation describ-
ing the physical processes in the Universe before the baryon-drag
epoch. We then evolve using the HALOFIT prescription (Smith
et al. 2003), giving an approximation to the evolved power spec-
trum at the effective redshift of the survey. To extract the BAO, this
power spectrum is fitted with a model as given by Eq. 32, where we
adopt a fixed BAO model (BEH) calculated using the Eisenstein &
Hu (1998) fitting formulae at the same fiducial cosmology. Divid-
ing P (k)lin by the best-fit smooth power spectrum component from
this fit produces our BAO model, which we denote BCAMB.

We damp the acoustic oscillations to allow for non-linear ef-
fects

Bm = (BCAMB � 1)e�k2⌃2
nl/2 + 1, (34)

where the damping scale ⌃nl is a fitted parameter. We assume
a Gaussian prior on ⌃nl with width ±2h�1 Mpc, centred on
8.24h�1 Mpc for pre-reconstruction fits and 4.47h�1 Mpc for
post-reconstruction fits, matching the average recovered values
from fits to the 600 mock catalogs with no prior. The exact width of
the prior is not important, but if we do not include such a prior, then
the fit can become unstable with respect to local minima at extreme
values.
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is extremely strong, and nearly all observations remain consistent
with a cosmological constant form of dark energy. CMB measure-
ments from the Wilkinson Microwave Anisotropy Probe (WMAP;
Bennett et al. 2013), ground-based experiments such as the Ata-
cama Cosmology Telescope (Das et al. 2014) and the South Pole
Telescope (George et al. 2015), and, especially, the Planck satel-
lite (Planck Collaboration I 2015) now provide strong constraints
on the cosmic matter and radiation density, the angular diameter
distance to the surface of last scattering, and the shape and am-
plitude of the matter power spectrum at the recombination epoch
zrec ⇡ 1090. These measurements also probe lower redshift matter
clustering through gravitational lensing and the integrated Sachs-
Wolfe (ISW; Sachs & Wolfe 1967) effect. Within ⇤CDM, CMB
data alone are sufficient to provide tight parameter constraints, but
these weaken considerably when non-zero curvature or more flex-
ible forms of dark energy are allowed (Planck Collaboration XIII.
2015, hereafter Planck2015). Supernova measurements of the ex-
pansion history have improved dramatically thanks to large ground-
based surveys that span the redshift range 0.2 < z < 0.8, im-
proved local calibrator samples, Hubble Space Telescope searches
that extend the Hubble diagram to z ⇡ 1.5, and major efforts
by independent groups to place different data sets on a common
scale and to identify and mitigate sources of systematic error (see
Suzuki et al. 2012; Betoule et al. 2014; and references therein).
BAO measurements, now spanning z = 0.1 � 0.8 and z ⇡ 2.5,
complement the SN measurements by providing an absolute dis-
tance scale, direct measurement of the expansion rate H(z), and
robustness to systematic errors (see discussion and references be-
low). Direct “distance ladder” measurements of H0 constrain the
present day expansion rate, providing the longest lever arm against
the CMB (Riess et al. 2011, 2016; Freedman et al. 2012). RSD and
weak gravitational lensing measurements provide complementary
probes of structure growth that have somewhat different parame-
ter sensitivity and very different systematics. Consistency of RSD
and weak lensing can also test modified gravity models that predict
different effective potentials governing light-bending and acceler-
ation of non-relativistic tracers. At present, these structure growth
measurements are substantially less precise than expansion history
measurements (⇠ 5 � 10% vs. ⇠ 1 � 2%), so they serve pri-
marily to test departures from GR and constrain neutrino masses
rather than measure dark energy parameters. This situation is likely
to change in next-generation experiments. Observational probes of
dark energy are reviewed by, e.g., Albrecht et al. (2006), Frieman,
Turner, & Huterer (2008), Blanchard (2010), Astier & Pain (2012),
and more comprehensively by Weinberg et al. (2013). Reviews fo-
cused more on theories of dark energy and modified gravity include
Copeland, Sami, & Tsujikawa (2006), Jain & Khoury (2010), and
Joyce, Lombriser, & Schmidt (2016). Reviews focused on future
observational facilities include LSST Science Collaboration et al.
(2009), Kim et al. (2015), Huterer et al. (2015), and Amendola et
al. (2016).

While acoustic oscillations were already incorporated in early
theoretical calculations of CMB anisotropies (Peebles & Yu 1970;
Sunyaev & Zel’dovich 1970), interest in using the BAO feature as
a “standard ruler” in galaxy clustering grew after the discovery of
cosmic acceleration (Eisenstein, Hu, & Tegmark 1998; Blake &
Glazebrook 2003; Seo & Eisenstein 2003). The physics of BAO
and contemporary methods of BAO analysis are reviewed at length
in Ch. 4 of Weinberg et al. (2013), and details specific to our anal-
yses appear in the supporting papers listed below. In brief, pressure
waves in the pre-recombination universe imprint a characteristic
scale on late-time matter clustering at the radius of the sound hori-

zon,

rd =

Z 1

zd

cs(z)
H(z)

dz , (1)

evaluated at the drag epoch zd, shortly after recombination, when
photons and baryons decouple (see Aubourg et al. 2015 for more
precise discussion). This scale appears as a localized peak in the
correlation function or a damped series of oscillations in the power
spectrum. Assuming standard matter and radiation content, the
Planck 2015 measurements of the matter and baryon density de-
termine the sound horizon to 0.2%. An anisotropic BAO analysis
that measures the BAO feature in the line-of-sight and transverse
directions can separately measure H(z) and the comoving angular
diameter distance DM (z), which is related to the physical angu-
lar diameter distance by DM (z) = (1 + z)DA(z) (Padmanabhan
et al. 2008). Adjustments in cosmological parameters or changes
to the pre-recombination energy density (e.g., from extra relativis-
tic species) can alter rd, so BAO measurements really constrain
the combinations DM (z)/rd, H(z)rd. An angle-averaged galaxy
BAO measurement constrains a combination that is approximately

DV (z) =
⇥
czD

2

M (z)/H(z)
⇤1/3

. (2)

An anisotropic BAO analysis automatically incorporates the so-
called Alcock-Paczynski (1979; AP) test, which uses the require-
ment of statistical isotropy to constrain the parameter combination
H(z)DM (z).

The localized three-dimensional nature of the BAO feature
makes BAO measurements robust to most observational system-
atics (see Ross et al. 2012, 2016), which tend to introduce only
smooth distortions in clustering measurements. Similarly, non-
linear evolution and galaxy bias are expected to produce smooth
rather than localized distortions of clustering. Our BAO analy-
sis methods introduce parametrized templates to marginalize over
smooth distortions of observational or astrophysical origin, and re-
sults are insensitive to details of these templates and to many other
analysis details (Vargas-Magaña et al. 2014, 2016). Non-linear evo-
lution broadens the BAO peak in the correlation function (or damps
high-k oscillations in the power spectrum), and simulations and
perturbation theory calculations indicate that non-linear evolution
and galaxy bias can shift the location of the BAO peak at a level
of 0.2 � 0.5% (Eisenstein et al. 2007b; Padmanabhan & White
2009; Seo et al. 2010; Mehta et al. 2011; Sherwin & Zaldarriaga
2012). Measurements of the BAO scale using samples with consid-
erable differences in galaxy bias that share the same volume have
obtained results consistent with such small shifts (Ross et al. 2014;
Beutler et al. 2016a). A key element of recent BAO analyses is re-
construction, which attempts to reverse non-linear effects so as to
sharpen the BAO peak and thereby restore measurement precision
(Eisenstein et al. 2007; Padmanabhan et al. 2012; Burden, Percival
& Howlett 2015; Schmittfull et al. 2015). Simulation tests and per-
turbation theory calculations show that reconstruction also removes
the small shifts induced by non-linearity and galaxy bias, to a level
of ⇡ 0.1% or better (Padmanabhan, White, & Cohn 2009; Noh,
White, & Padmanabhan 2009; Seo et al. 2010; Mehta et al. 2011;
Tassev & Zaldarriaga 2012; White 2015). The combination of pre-
cision, complementarity to SNe, and robustness to systematics has
made BAO a pillar of contemporary cosmology.

Early analyses of the power spectrum of the 2-Degree Field
Galaxy Redshift Survey (2dFGRS; Colless et al. 2003) showed
strong hints of baryonic features (Percival et al. 2001), but the first
clear detections of BAO came in 2005 with analyses of the final
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Baryon Acoustic Oscillations

u Non-linear effects on BAO

u As structure grows, galaxy peculiar velocities 
smooth out the BAO peak on scales of 15-20 
Mpc/h  

u PT or numerical simulations predict a Gaussian 
damping of the peak
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Baryon Acoustic Oscillations

u Reconstruction: mitigate non-linear effects and sharpen the BAO peak 
(usually based on Zel’dovich approximation)
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u Anisotropy induced by the assumed (fiducial) cosmology which convert
redshift into distances.

BAO & Alcock-Pazcynski distortions
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Figure 6. Measured ⇠(r?, rk) and associated models for L > L⇤ galaxies
at z = 1. In each panel the dotted, dot-dashed, and solid curves correspond
respectively to model A, B, and C with exponential damping and linear bias,
while the contours correspond to the measured ⇠(r?, rk) in the galaxy cat-
alogue. The top panel shows the fiducial prediction of the models while the
bottom panel shows the best-fitting model when the parameters (f ,�v ,bL)
are allowed to vary. We note the fiducial value for �v is fixed to its linear
value. In this figure, the measured ⇠(r?, rk) is smoothed using a Gaussian
kernel of size 0.5h�1 Mpc.

determined for each galaxy population by minimising the differ-
ence between ⇠gg and b

2
L⇠�� on scales above r = 10h�1 Mpc.

It is evident from this figure that non-linearities in the galaxy bias
produce variations up to 40% in the real-space clustering on scales
1h�1 Mpc < r < 20h�1 Mpc, the strength of the effect increas-
ing for more luminous galaxies.

Let us come back to our original L > L
⇤ catalogues and re-

peat the analysis of the previous section now including the scale
dependence of galaxy bias shown in Fig. 8. The new statistical and
systematic errors on f estimated from our simulated catalogues are
shown in Figs. 9 and 10. In general, one sees that including the
bias scale-dependence information has only the effect of shifting
the recovered f values by about �3% at both z = 1 and z = 0.1.
This systematic effect is not straightforward to explain but could be
due to degeneracies in the models when including this extra degree
of freedom. Accounting for bias scale dependence tends however
to reduce the dependence of the systematic error on the minimum
fitted scale when including scales below r? = 10h�1 Mpc: the
retrieved value is more constant down to r

min
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Figure 7. Same as Fig. 6 but at z = 0.1.
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Figure 6. Measured ⇠(r?, rk) and associated models for L > L⇤ galaxies
at z = 1. In each panel the dotted, dot-dashed, and solid curves correspond
respectively to model A, B, and C with exponential damping and linear bias,
while the contours correspond to the measured ⇠(r?, rk) in the galaxy cat-
alogue. The top panel shows the fiducial prediction of the models while the
bottom panel shows the best-fitting model when the parameters (f ,�v ,bL)
are allowed to vary. We note the fiducial value for �v is fixed to its linear
value. In this figure, the measured ⇠(r?, rk) is smoothed using a Gaussian
kernel of size 0.5h�1 Mpc.
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peat the analysis of the previous section now including the scale
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systematic errors on f estimated from our simulated catalogues are
shown in Figs. 9 and 10. In general, one sees that including the
bias scale-dependence information has only the effect of shifting
the recovered f values by about �3% at both z = 1 and z = 0.1.
This systematic effect is not straightforward to explain but could be
due to degeneracies in the models when including this extra degree
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Figure 6. Measured ⇠(r?, rk) and associated models for L > L⇤ galaxies
at z = 1. In each panel the dotted, dot-dashed, and solid curves correspond
respectively to model A, B, and C with exponential damping and linear
bias, while the contours correspond to the measured ⇠(r?, rk) in the galaxy
catalogue. The top panel shows the fiducial prediction of the models
while the bottom panel shows the best-fitting model when (f ,�v ,bL)
parameters are allowed to vary. We note that in the latter case �v is fixed
to its linear value. In this figure, the measured ⇠(r?, rk) is smoothed using
a Gaussian kernel of size 0.5h�1 Mpc.

It is evident from this figure that non-linearities in the galaxy bias
produce variations up to 40% in the real-space clustering on scales
1h�1 Mpc < r < 20h�1 Mpc, the strength of the effect increas-
ing for more luminous galaxies.

Let us come back to our original L > L
⇤ catalogues and re-

peat the analysis of the previous section now including the scale
dependence of galaxy bias shown in Fig. 8. The new statistical and
systematic errors on f estimated from our simulated catalogues are
shown in Figs. 9 and 10. In general, one sees that including the
bias scale-dependence information has only the effect of shift-
ing the recovered f values by about �3% at both z = 1 and
z = 0.1. This systematic effect is not straightforward to explain
but could be due to degeneracies in the models when including
this extra degree of freedom. Accounting for bias dependence
on scale tends however to reduce the dependence of the system-
atic error on the minimum fitted scale when including scales
below r? = 10h�1 Mpc: the retrieved value is more constant
down to r

min
? = 1h�1 Mpc for all considered models. More-
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Figure 7. Same as Fig. 6 but at z = 0.1.

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1  10

b
N
L
(r
)

r  [h
-1
 Mpc]

L>L
*
 bL=1.34, z=0.1

L>2L
*
 bL=1.41, z=0.1

L>3L
*
 bL=1.70, z=0.1

LRG faint bL=2.06, z=0.34

L>L
*
 bL=2.01, z=1

L>2L
*
 bL=2.28, z=1

L>3L
*
 bL=2.53, z=1

Figure 8. The scale dependence of galaxy bias at z = 0.1 and z = 1.0,
for the different galaxy populations considered in this work (see inset). It is
defined as bNL(r) =

⇥
⇠gg(r)/

�
b2L⇠��(r)

�⇤1/2.

c� 2011 RAS, MNRAS 000, 1–16

Structure growth

Li
ne

 o
f 

si
gh

t

Redshift 
space

Real 
space

Galaxy anisotropic 
correlation function

de
 l

a 
To

rr
e 

et
 a

l.
 2

01
2



RSD measurements

340 S. de la Torre and L. Guzzo

Taruya A., Nishimichi T., Saito S., Hiramatsu T., 2009, Phys. Rev. D, 80,
123503

Taruya A., Nishimichi T., Saito S., 2010, Phys. Rev. D, 82, 063522
Tegmark M. et al., 2004, ApJ, 606, 702
Tegmark M. et al., 2006, Phys. Rev. D, 74, 123507
Tinker J. L., Weinberg D. H., Zheng Z., 2006, MNRAS, 368, 85
Toyoda M., Ozaki T., 2010, Comput. Phys. Commun., 181, 277
van den Bosch F. C., Norberg P., Mo H. J., Yang X., 2004, MNRAS, 352,

1302
van den Bosch F. C., Weinmann S. M., Yang X., Mo H. J., Li C., Jing Y. P.,

2005, MNRAS, 361, 1203
Wang L., Steinhardt P. J., 1998, ApJ, 508, 483
Wang Y. et al., 2010, MNRAS, 409, 737
Watson D. F., Berlind A. A., McBride C. K., Hogg D. W., Jiang T., 2012,

ApJ, 749, 83
White M. et al., 2011, ApJ, 728, 126
Zehavi I. et al., 2005, ApJ, 630, 1
Zehavi I. et al., 2011, ApJ, 736, 59
Zheng Z. et al., 2005, ApJ, 633, 791
Zheng Z., Coil A. L., Zehavi I., 2007, ApJ, 667, 760

APPENDIX A: REDSHIFT-SPACE
ANISOTROP IC TWO- POI N T COR R EL ATI ON
F U N C T I O N F O R T H E TA RU YA , N I S H I M I C H I &
S A I TO (2 0 1 0 ) M O D E L

The redshift-space anisotropic two-point correlation function is
obtainable by Fourier transforming the anisotropic redshift-space
power spectrum Ps(k, µ) as

ξ (r⊥, r‖) =
∫

d3k
(2π)3

eik·sP s(k, µ) =
∑

l

ξ s
l (s)Ll(ν), (A1)

where ν = r‖/s, r⊥ =
√

s2 − r2
‖ and Ll denote Legendre polynomi-

als. The correlation function multipole moments ξ s
l (s) are defined

as

ξ s
l (s) = il

∫
dk

2π2
k2P s

l (k)jl(ks), (A2)

where jl denotes the spherical Bessel functions and

P s
l (k) = 2l + 1

2

∫ 1

−1
dµP s(k, µ)Ll(µ). (A3)

In the case of biased tracers of mass, Taruya et al. (2010) model
for the redshift-space anisotropic power spectrum can be written as

P s(k, µ) = D(kµσv)
[
b2Pδδ(k) + 2bµ2f Pδθ (k)

+ µ4f 2Pθθ (k) + CA(k, µ; f , b) + CB (k, µ; f , b)
]
,

(A4)
where b is the spatial bias of the considered tracers, and

CA(k, µ; f , b) =
3∑

m,n=1

b3−nf nµ2mPAmn(k),

CB (k, µ; f , b) =
4∑

n=1

2∑

a,b=1

b4−a−b(−f )a+bµ2nPBnab(k),

with

PAmn(k) = k3

(2π)2

[∫ ∞

0
dr

∫ +1

−1
dx (Amn(r, x)P (k)

+ Ãmn(r, x)P (kr)
)

×
P

(
k
√

1 + r2 − 2rx
)

(1 + r2 − 2rx)2

+ P (k)
∫ ∞

0
dramn(r)P (kr)

]
, (A5)

PBnab(k) = k3

(2π)2

∫ ∞

0
dr

∫ +1

−1
dxBn

ab(r, x)

Pa2

(
k
√

1 + r2 − 2rx
)

Pb2(kr)

(1 + r2 − 2rx)a
, (A6)

where functions Amn(r, x), Ãmn(r, x), amn(r, x) and Bab(r, x) are
given in appendix A of Taruya et al. (2010), P(k) is the linear
mass power spectrum, P12(k) = Pδθ (k), and P22(k) = Pθθ (k). By
using the Kaiser term in equation (A4) [i.e. equation A4 without
the damping function D(kµσ v)] into equations (A3) and A2, one
obtains the corresponding correlation function multipole moments.
The non-null multipole moments are then given by

ξ s
0 (s) = b2ξδδ + bf

2
3
ξδθ + f 2 1

5
ξθθ

+ b2f
1
3
ξA11 + bf 2 1

3
ξA12 + bf 2 1

5
ξA22 + f 3 1

5
ξA23

+ f 3 1
7
ξA33 + b2f 2 1

3
ξB111 − bf 3 1

3
(ξB112 + ξB121)

+ f 4 1
3
ξB122 + b2f 2 1

5
ξB211 − bf 3 1

5
(ξB212 + ξB221)

+ f 4 1
5
ξB222 − bf 3 1

7
(ξB312 + ξB321) + f 4 1

7
ξB322

+ f 4 1
9
ξB422, (A7)

ξ s
2 (s) = bf

4
3
ξ

(2)
δθ + f 2 4

7
ξ

(2)
θθ

+ b2f
2
3
ξ

(2)
A11 + bf 2 2

3
ξ

(2)
A12 + bf 2 4

7
ξ

(2)
A22 + f 3 4

7
ξ

(2)
A23

+ f 3 10
21

ξ
(2)
A33 + b2f 2 2

3
ξ

(2)
B111 − bf 3 2

3

(
ξ

(2)
B112 + ξ

(2)
B121

)

+ f 4 2
3
ξ

(2)
B122 + b2f 2 4

7
ξ

(2)
B211 − bf 3 4

7

(
ξ

(2)
B212 + ξ

(2)
B221

)

+ f 4 4
7
ξ

(2)
B222 − bf 3 10

21

(
ξ

(2)
B312 + ξ

(2)
B321

)
+ f 4 10

21
ξ

(2)
B322

+ f 4 40
99

ξ
(2)
B422, (A8)

ξ s
4 (s) = f 2 8

35
ξ

(4)
θθ

+ bf 2 8
35

ξ
(4)
A22 + f 3 8

35
ξ

(4)
A23 + f 3 24

77
ξ

(4)
A33 + b2f 2 8

35
ξ

(4)
B211

− bf 3 8
35

(
ξ

(4)
B212 + ξ

(4)
B221

)
+ f 4 8

35
ξ

(4)
B222 − bf 3 24

77

(
ξ

(4)
B312

+ ξ
(4)
B321

)
+ f 4 24

77
ξ

(4)
B322 + f 4 48

143
ξ

(4)
B422, (A9)

ξ s
6 (s) = f 3 16

231
ξ

(6)
A33 − bf 3 16

231

(
ξ

(6)
B312 + ξ

(6)
B321

)
+ f 4 16

231
ξ

(6)
B322

+ f 4 64
495

ξ
(6)
B422, (A10)

ξ s
8 (s) = f 4 128

6435
ξ

(8)
B422, (A11)

where ξAmn and ξBnab are the Fourier conjugate pairs of PAmn and
PBnab in equations (A5) and (A6), and ξ

(l)
X are the correlation function

multipole moments associated with PX as defined in equation (A2).
For orders l = 2, 4, 6 and 8, the latter can be conveniently rewritten
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The function hNgal(m|z,MB)i is shown in Fig. 13 for the di↵erent
values of x probed with VIPERS. We checked the consistency of
this parameterization and verify that the wp(rp) predicted by the
mocks and the that measured are good agreement for all probed
redshift and luminosity thresholds. This is shown in the accom-
panying paper (Marulli et al. 2013).

7. Redshift-space distortions

The main goal of VIPERS is to provide with the final sample
accurate measurements of the growth rate of structure in two
redshift bins between z = 0.5 and z = 1.2. The growth rate of
structure f can be measured from the anisotropies observed in
redshift space in the galaxy correlation function or power spec-
trum. Although this measurement is degenerate with galaxy bias,
the combination f�8 is measurable and still allows a fundamen-
tal test of modifications of gravity since it is a mixture of the
di↵erential and integral growth. In this Section, we present an
initial measurement of f�8 from the VIPERS first data release.

7.1. Method

With the first epoch VIPERS data we can reliably probe scales
below about 35 h

�1 Mpc. The use of the smallest non-linear
scales, i.e. typically below 10 h

�1 Mpc, is however di�cult be-
cause of the limitations of current redshift-space distortion mod-
els, which cannot describe the non-linear e↵ects that relate the
evolution of density and velocity perturbations. However, with
the recent developments in perturbation theory and non-linear
models for RSD (e.g. Taruya et al. 2010; Reid & White 2011;
Seljak & McDonald 2011), we can push our analysis well into
mildly non-linear scales and obtain unbiased measurements of
f�8 while considering minimum scales of 5� 10 h

�1 Mpc (de la
Torre & Guzzo 2012).

With the VIPERS first data release, we perform an initial
redshift-space distortion analysis, considering a single redshift
interval of 0.7 < z < 1.2. We select all galaxies above the mag-
nitude limit of the survey in that interval. The e↵ective pair-
weighted mean redshift of the subsample is z = 0.8. The mea-
sured anisotropic correlation function ⇠(rp, ⇡) is shown in the
top panel of Fig. 14. We have used here a linear binning of
�rp = �⇡ = 1 h

�1 Mpc. One can see in this figure the two main
redshift-space distortion e↵ects: the elongation along the line-
of-sight, or Finger-of-God e↵ect, which is due to galaxy ran-
dom motions within virialized objects and the squashing e↵ect
on large scales, or Kaiser e↵ect, which represents the coherent
large-scale motions of galaxies towards overdensities. The lat-
ter e↵ect is the one we are interested in since its amplitude is
directly related to the growth rate of pertubations. Compared to
the previous high-redshift studiy using the VVDS survey, this
signature is detected with impressive signal-to-noise, with the
flattening being apparent to rp > 30 h

�1 Mpc.
The two-dimensional anisotropic correlation has been exten-

sively used in the literature to measure the growth-rate param-
eter. However, with the increasing size and statistical power
of redshift surveys, an alternative approach has grown in im-
portance: the use of the multipole moments of the anisotropic
correlation function. This approach has the main advantage of
reducing the number of observables, compressing the cosmolog-
ical information contained in the correlation function. In turn,
this eases the estimation of the covariance matrices associated
with the data. We adopt this methodology in this analysis and fit
for the two first non-null moments ⇠0(s) and ⇠2(s), where most
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Fig. 14. Anisotropic correlation function of galaxies at 0.7 < z <
1.2. The top panel shows the results for the VIPERS first data release,
deduced by the Landy-Szalay estimator counting pairs in cells of side
1 h
�1 Mpc. The lower two panels show the results of two simulations,

which span the 68% confidence range on the fitted value of the large-
scale flattening (see Section 7.4).
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Figure 18. Parameter contours for f�8, DA and H for the predictions by
the 5 companion papers using the same DR14Q dataset for traditional RSD
analyses. Blue contours show the results presented in this work in configu-
ration space, and red contours show the predictions by Hou et al. (2018) in
configuration space too using a second RSD modeling. The Fourier Space
based analyses are shown in green contours for the results by Gil-Marin
et al. (2018) using a third RSD modeling, in magenta contours for the re-
sults by Ruggeri et al. (2018) and in orange contours for Zhao et al. (2018),
both using redshift weighting techniques but with a different model.

Figure 19. Evolution of the BAO distances with redshift compared to the
prediction from the flat ⇤-CDM model with Planck parameters. The Hub-
ble distance DH is related to the Hubble parameter H by DH = c/H

and DM = (1 + z)DA where DM is the comoving angular diameter dis-
tance. The BAO results from this work using the eBOSS DR14 quasars are
represented by the * marker and are compared to previous analyses using
galaxies and Ly-↵ forests to probe different epochs.
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Figure 20. Left : Cosmological constraints in the ⌦⇤ vs ⌦m plane. Right:
Cosmological constraints in the w vs ⌦m plane. The inner and outer con-
tours show the 68 and 95% confidence-level two-dimensional marginalised
constraints. All contours are showed assuming a flat ⇤CDM-model. The
blue contour represents the cosmological constraints using BOSS DR12
galaxies, the red contour shows the gain when adding the eBOSS quasar
sample and the green contour also includes the results from Ly-↵ measure-
ments. All results are consistent with a ⇤CDM Universe.

Figure 21. Measurements of f�8(z) with redshift compared to the predic-
tion from the flat ⇤-CDM+GR model with Planck parameters. The f�8(z)

result presented in this work for the quasar sample is represented by the *
marker and is obtained using 3-multipole fit. The error bar represents the to-
tal systematic error that includes the statistical precision and the systematic
error related to the RSD modeling used in this analysis.

The GR prediction that � = 0.55 can not be accurately
tested given the statistical precision of the eBOSS quasar sample
only. Combining our data to the measurement of ⌦m from Planck
produces � = �0.2 ± 1.2. The lack of precision arises because
in the eBOSS quasar redshift range, ⌦m is close to 1 and the
sensitivity to � is therefore reduced as can be seen from the black
curves in Figure 21, which shows theoretical predictions on f�8

for different values of �.

As for the cosmological distances, the growth rate measure-
ment uncertainty should be reduced by a factor ⇠2 once the final
eBOSS sample will be complete. However, the clustering measure-
ments using the current eBOSS quasar sample represent the most
precise f�8 measurements to date in the almost unexplored redshift
range 1 < z < 2.

MNRAS 000, 1–25 (2017)

Zarrouk et al. 2018
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Figure 6. Measured ⇠(r?, rk) and associated models for L > L⇤ galaxies
at z = 1. In each panel the dotted, dot-dashed, and solid curves correspond
respectively to model A, B, and C with exponential damping and linear bias,
while the contours correspond to the measured ⇠(r?, rk) in the galaxy cat-
alogue. The top panel shows the fiducial prediction of the models while the
bottom panel shows the best-fitting model when the parameters (f ,�v ,bL)
are allowed to vary. We note the fiducial value for �v is fixed to its linear
value. In this figure, the measured ⇠(r?, rk) is smoothed using a Gaussian
kernel of size 0.5h�1 Mpc.

determined for each galaxy population by minimising the differ-
ence between ⇠gg and b

2
L⇠�� on scales above r = 10h�1 Mpc.

It is evident from this figure that non-linearities in the galaxy bias
produce variations up to 40% in the real-space clustering on scales
1h�1 Mpc < r < 20h�1 Mpc, the strength of the effect increas-
ing for more luminous galaxies.

Let us come back to our original L > L
⇤ catalogues and re-

peat the analysis of the previous section now including the scale
dependence of galaxy bias shown in Fig. 8. The new statistical and
systematic errors on f estimated from our simulated catalogues are
shown in Figs. 9 and 10. In general, one sees that including the
bias scale-dependence information has only the effect of shifting
the recovered f values by about �3% at both z = 1 and z = 0.1.
This systematic effect is not straightforward to explain but could be
due to degeneracies in the models when including this extra degree
of freedom. Accounting for bias scale dependence tends however
to reduce the dependence of the systematic error on the minimum
fitted scale when including scales below r? = 10h�1 Mpc: the
retrieved value is more constant down to r

min
? = 1h�1 Mpc for
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Figure 7. Same as Fig. 6 but at z = 0.1.
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Figure 8. The scale dependence of galaxy bias at z = 0.1 and z = 1.0,
for the different galaxy populations considered in this work (see inset). It is
defined as bNL(r) =
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● SDSS: collection of wide-area, multi-band imaging and spectroscopic surveys
● Primary goal to probe the large-scale structure of the universe and 

cosmology
● SDSS-IV uses 2.5-meters telescope was designed and built at the Apache 

Point Observatory, at Sunspot, New Mexico, USA
● Observations performed with two multi-objects fiber-fed twin spectrograph

SDSS telescope SDSS plate SDSS fibers

State-of-the art: SDSS-IV



u Galaxies target by eBOSS :

u Luminous red galaxies (LRGs, mostly elliptical galaxies) 

u Emission lines galaxies (ELGs, spiral/irr. galaxies)

u Quasars (QSOs)

u Quasars absorption lines: the Lyman-alpha forest

u Additional data : Constant mass galaxies observed by 
BOSS (CMASS, 75% red 25 % blue galaxies)

23

eBOSS galaxies samples

SDSS/eBOSS survey

Luminous red galaxy Emission-line galaxy



eBOSS observations

eBOSS angular footprint

LRG and CMASS radial
selection function

Bautista, Paviot, Vargas, de la Torre 2020



Control of the observational systematics

25

u Three main sources of 
systematics:

u Angular fluctuations of the 
number of targets due to the 
quality of the imaging

u Fiber collision (due to the 
physical size of each fiber)

u Catastrophic redshift (due to bad
redshift determination)

eBOSS spectroscopic sampling



State-of the art: eBOSS survey

u 377 458 LRGs in the range 0.6 < z < 1.0
Pre-reconstruction

Post-reconstruction

Galaxy anisotropic 
correlation function

Anisotropy almost removed by 
reconstructoin

BAO

Bautista et al.  2020 



RSD measurements

Bautista et al.  2020 



eBOSS Systematic error budget

u For precision cosmology systematic and 
statistical error need to assessed in great
detail

u Total systematic budget :

u More than 50 % of the statistical error for each
parameter

u Dominated by observational systematics

28
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Cosmological implication of 2O years of SDSS 
surveys

u 7 independents measurements
of expansion rate history

u 6 independents measurements
on the growth rate of structure

u By combining geometrical and 
growth of structure 
measurements for 20 years of 
SDSS survey, obtain most precise
measurement of expansion and 
growth history to date

29

eBOSS collaboration 2021 



Cosmological implication on gravity/DE

u Observations compatible with the standard model: General Relativity + 
cosmological constant

u No detection of (parametric) modification to General Relativity prediction
30



u Can we go beyond two-point statistics to probe cosmology?

u BAO feature 4.5𝜎 detection in the 3-point correlation function

2 Slepian & Eisenstein

simulations (e.g. Gil-Marín et al. 2014). However only very
few works consider the BAO. Sefusatti et al. (2006) focuses
on joint analysis of the power spectrum and bispectrum and
notes that BAO can break degeneracies (see their Figures 7,
9, and 10). Gil-Marín et al. (2012) give a fitting formula for
the dark matter bispectrum including BAO, and Gil-Marín
et al. (2014) includes RSD.

The purpose of the present work is to develop a model
of the 3PCF in configuration space in a form suitable for
fitting the 3PCF of a large-scale redshift survey. First, we
will convert the bispectrum model of SCF99 to configura-
tion space. We will find that RSD essentially rescale the
no-RSD 3PCF in a way that is roughly independent of
both physical scale and triangle opening angle. This con-
clusion develops ideas first advanced in S16a and helps ex-
plain why the configuration-space model without RSD in
that work was able to obtain a reasonable fit to the data.
In the present work, we also develop a redshift-space model
of the baryon-dark matter relative velocity effect, develop-
ing previous work on this term’s signature in the 3PCF in
real-space (SE15a).

As a second goal of this paper, we will present a fast
scheme for computing 3PCF predictions in the multipole
basis first proposed in Szapudi (2004) and further devel-
oped in Slepian & Eisenstein (2015a, b, c; hereafter SE15a,
b, c). Typically perturbation theory expressions for the
3PCF ⇣ are written as cyclic sums over functions of pairs
of sides and their enclosed angle, for instance in the form
⇣ ⇠ ⇠(r1)⇠(r2) + cyc., with ⇠ the 2PCF (Groth & Peebles’
1977 “hierarchical ansatz”; see also Fry & Peebles 1978; Davis
& Peebles 1977; Ma & Fry 2000). Each term in the cyclic
sum of such an expression corresponds to a different galaxy’s
contributing a particular bias term to the expectation value
h�g�g�gi, as we further explain in §3.

In reality, it is unknown which galaxy contributes which
bias term, and one must cyclically sum so that all galaxies
have a chance to contribute all the bias terms relevant at a
given order in perturbation theory. Given two sides r1 and r2

and the cosine of their enclosed angle, r̂1 · r̂2, cyclic summing
requires computing the third side and the two additional
angles. This side and these angles depend on non-separable
functions of r1, r2, and r̂1 · r̂2 and so their calculation scales
as the number of grid points used for each side, Nr, times the
number of grid points in angle cosine, Nµ—that is, N2

rNµ.
Yet in the end we wish to bin the predictions in side

lengths to a relatively modest number of bins, Nbins, and
also project the angular dependence onto Legendre polyno-
mials. In this work we show how to do these operations first,
meaning that the cyclic summing can be made to scale as
N

2

bins for each multipole, for a total scaling as N2

bins`max with
`max the maximal multipole. Computing the 3PCF predic-
tions in the multipole basis using this scheme is consequently
significantly more efficient. This efficiency will be important
as the 3PCF becomes a standard tool for large-scale struc-
ture analyses and it becomes desirable to run a large grid of
cosmological parameters through a prediction pipeline.

The paper is laid out as follows. In §2, we present the
redshift-space bispectrum model of SCF99 and show how
to cast it to configuration space. We then incorporate add
tidal tensor biasing and briefly discuss other possible refine-
ments to our model. In §3, we present the more efficient
cyclic summing scheme summarized above. §4 discusses our

results after cyclic summing, and §5 shows how to add rel-
ative velocity biasing in redshift space. §6 concludes. Two
Appendices showing mathematical results used in the main
text follow §6.

For all of the results displayed in this work, we have used
transfer functions output from CAMB (Lewis 2000) with a
geometrically flat ⇤CDM cosmology with the following pa-
rameters: ⌦bh

2 = 0.0220453, ⌦ch
2 = 0.119006, TCMB =

2.7255 K, ns = 0.9611. These parameters match those used
in S16a and do not differ substantially from the Planck val-
ues (Planck Paper XIII, 2015). Our �8(z = 0) = 0.8288, and
we rescale �8 by the ratio of the linear growth factor at the
survey redshift to the linear growth factor at redshift zero.
We take the survey redshift to be zsurvey = 0.565 so that
our results are comparable to the CMASS galaxy sample
discussed in S16a.

2 RSD MODEL WITH LINEAR AND
NON-LINEAR BIASING

2.1 Multipoles in Fourier space: pre-cyclic

For an idealized survey (constant line of sight to the survey,
uniform density, etc.), the full redshift-space bispectrum de-
pends on five parameters: three to characterize the triangle’s
shape, e.g. two sides and the enclosed angle, and two to de-
scribe the orientation of the triangle to the line of sight.
One starts with nine parameters describing each coordinate
of the three triangle vertices; translation invariance reduces
this to six and rotation invariance about the line of sight to
five.

SCF99 uses the angle of one triangle side (in Fourier
space) to the line of sight and the azimuthal angle of the
second side about this first side to capture the orientation.
SCF99 averages over all azimuthal angles of the second side
about the first side to write the redshift-space bispectrum
as a multipole series with angular piece dependent on the
angle between the line of sight and the first side. Further
averaging over all orientations of this first side selects the
monopole moment in their equation (20). Our focus here is
the fully averaged 3PCF, so this monopole moment is our
starting point. It is

Bs(k1, k2, x) =b
3

1P (k1)P (k2)


F̃2(k1, k2;x)DSQ1(�, x)+

G̃2(k1, k2;x)DSQ2(�, k1, k2;x)+

DNLB(�, �;x) +DFOG(�, k1, k2;x)

�
+ cyc.,

(1)

where P is the linear theory matter power spectrum, b1 is
the linear bias, � = 2b2/b1 is the ratio1 of non-linear bias b2

to linear bias, � = f/b1, with f = d lnD/d ln a ⇡ ⌦0.55
m the

logarithmic derivative of the linear growth rate D with re-
spect to scale factor a, and x ⌘ k̂1 · k̂2. Our notation mostly
follows SCF99’s; subscript s denotes redshift space; F̃2 is

1 Our galaxy bias model has a term proportional to b2, while
SCF99’s uses b2/2, leading to a factor of 2 in � relative to its
definition in SCF99.

c� 0000 RAS, MNRAS 000, 000–000

Baryon acoustic oscillations in the 3PCF 1745

Figure 3. The upper panels show the best-fitting BAO and no-wiggle models for the data versus the distance scale parameter α. For each, we have indicated
the best-fitting α with a black star. In both models the best-fitting BAO template is preferred at roughly 4.5σ to the best-fitting no-wiggle template. The lower
panel shows the BAO templates for each bias model, with best-fitting α again denoted by stars. The horizontal lines in this lower panel denote 1σ and 2σ

thresholds for each model, solid for tidal tensor and dashed for minimal. The tidal tensor model provides a slightly better fit to the data, and both χ2 curves
have similar widths with respect to α, suggesting our distance scale precision should be robust to bias model choice. Further discussion of these plots is in
Section 7.

template is 4.5σ better than the no-wiggle template, in fact within
the physical template the rejection of alternative αs has a much
steeper divot than this: we reject alternate values of α at roughly
7σ . The no-wiggle template is an interesting null hypothesis only
for testing for the BAO’s presence. Once the BAO are assumed, the
steep divot rejecting alternate values of α permits a highly precise
constraint on the cosmic distance scale.

The best-fitting α for the physical templates within each model
is indicated with a black star. The narrowness of the χ2 valley with
respect to α indicates that we should find a very precise constraint
on the cosmic distance scale from these BAO detections; we will
return to this point in Section 8. In the lower panel of Fig. 3, we
show both minimal and tidal tensor models for the physical power
spectrum template only to permit comparison of these two models.

Again we indicate the best-fitting α for each model with a black star.
This lower panel also shows that the tidal tensor model is overall a
slightly better fit to the data than the minimal model, as its minimal
χ2 is lower. The similar width about their respective minima of
the χ2 curves in the lower panel shows that the precision of the
constraint on α is also robust to bias model choice.

Overall, there is mild evidence that a tidal tensor bias is required.
From Table 1, $χ2 = 6.80 between the tidal tensor model with
physical template and the minimal model with physical template,
meaning a 2.6σ preference for tidal tensor bias.

The top two panels of Fig. 4 illustrate that our results are typical
given the survey volume and the tidal tensor bias model. The left
panel shows a histogram of the χ2 for 298 mocks and, with the
data value marked as a red vertical line, that our best-fitting χ2 is

MNRAS 469, 1738–1751 (2017)
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Figure 6. A fit of PT predictions, computed using the physical power
spectrum, to the compressed 3PCF’s multipoles ! = 0 − 4 for the CMASS
sample. Notice the peaks in l = 0, 1, and 4 around the BAO scale of
r1 = 100 Mpc h−1. In particular, compare the ! = 1 panel here with that
of Fig. 4 to aid in identifying the peak and trough the BAO induce in the
3PCF’s dipole moment. The points in the peak are anti-correlated with those
in the trough, as shown in Fig. 2 (second tile on the diagonal). These points
are therefore more constraining than the error bars shown would suggest.
The error bars plotted are the diagonal of the covariance matrix, and the
χ2/d.o.f. = 107.64/107.

Figure 7. Same as Fig. 6 but now for multipoles ! = 5–9. These higher
multipoles appear noisier than their lower-! counterparts, as indicated by
the larger number of points more than 1σ distant from the model. While the
error bars are similar in magnitude to those in Fig. 6, the signal is reduced
relative to the largest in Fig. 6 (i.e. ! = 2 and 3).

We obtain essentially no constraint on b2. On these large scales,
the 3PCF in our compressed basis seems to be insensitive to the
redshift-space non-linear bias aside from indicating its existence.
Fig. 8 shows the probability of a given b1 and b2 having marginalized
over the integral constraint (encoded in c; see Section 5.3). The

Figure 8. The probability contours for the redshift-space biases b1 and b2
having marginalized over the integral constraint. The red ellipse contains
68 per cent of the probability and the light blue 95 per cent. One can see
that our measurement obtains a good constraint on b1 but has very little
constraining power on b2, a conclusion borne out quantitatively by the large
error bar on b2 relative to that on b1 quoted in Table 1.

elliptical appearance of the iso-probability contours means that b1

and b2 are roughly Gaussian-distributed. The ellipses drawn in red
and light blue show 68 per cent and 95 per cent containment regions
and do not assume Gaussianity; we simply integrate over the region
until we reach these containments. The greater length of the ellipses
in the b2 direction illustrates that we do not obtain much constraint
on b2.

7.2 Searching for the BAO

To determine the significance of a BAO signal in our compressed
multipole measurements of the 3PCF, we fit PT predictions for
the 3PCF computed using the no-wiggle model to both mocks and
data, and compute the $χ2 relative to our fits of Section 7.1, which
used the physical power spectrum equation (19). We emphasize that
the BAO significance always stems from comparing the no-wiggle
model to the physical power spectrum model. In this work, we do
not fit for the BAO scale itself to extract distance information, but
this will be a direction of future work.

For the mean of the MULTIDARK-PATCHY mocks, we find a clear
preference for the BAO model. The comparison is between Figs 4
(with BAO) and 9 (without BAO). The $χ2 is 3234.34, meaning if
we had a survey volume 299 times as large as CMASS, we would
expect a 56.9σ BAO detection even in our compressed 3PCF. The
reason for the large χ2 penalty of the no-BAO model over the model
with BAO can be seen by the visual comparison of Figs 4 and 9
around the BAO scale of r1 = 100 Mpc h−1, most prominently in
! = 1 but also in ! = 0 and 4.

For the CMASS data, we again find a preference for the BAO,
with $χ2 = 7.58, meaning a 2.8σ preference for the BAO. One
can see, comparing Figs 6 and 10, that both physical and no-wiggle
models fit the data reasonably well, but that around the BAO scale
of r1 = 100 Mpc h−1, the no-wiggle model fits less well. Scaling
the 56.9σ detection from the 299 mocks’ mean down by

√
299

to mirror the volume of CMASS, we expect on average a 3.29σ
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Combining two- and three-point statistics

u Adding Bispectrum improves cosmological constraints 

8 H. Gil-Maŕın et al.
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Figure 2. Bispectrum data: the top sub-panels display the measured LOWZ- (top panel) and CMASS-DR12 (bottom panel) bispectrum
monopole for di↵erent triangular shapes: equilateral triangles (red squares), isosceles triangles (blue circles) and scalene triangles (green
triangles), ordered sequentially in k1, k2 and k3 (see text for details of the ordering), and covering 0.03  ki [hMpc�1]  0.18 for the
LOWZ sample and 0.03  ki [hMpc�1]  0.22 for the CMASS sample. As for the power spectrum, the measurements correspond to a
combination of the northern and southern galactic caps, described by Eq. 8. The displayed error-bars correspond to the dispersion among
2048 realisations of the MD-Patchy mocks. The black solid line represent the best-fitting model using the parameters of Table 3. The
middle and the bottom sub-panel show the deviation of the model respect to the data, as it is shown in Fig. 1 for the power spectrum.
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Figure 16. The left panels show the individual measurements of f�8, Hrs and DA/rs corresponding to the RSD P analysis (Gil-Maŕın
et al. 2016a), RSD P+B analysis (this work), BAO analysis (Gil-Maŕın et al. 2016b), as well as the combination of all of them according
to Eq. 35, using the correlation coe�cients presented in Fig. 15. The right panels show the same comparison in terms of the 1� (solid
lines) and 2� (dashed lines) confident regions in the f�8-Hrs-DA/rs parameter space. Top panels refer to the LOWZ sample and bottom
panels to the CMASS sample.

standard deviation error-bars of the individual f�8, Hrs and
DA/rs parameters; whereas the right panels display the cor-
relation ellipses of the same parameters. These results are as
well displayed for clarity in a Table 6.

From the panels of Fig. 16 we observe a . 1� agreement
among most of the parameters coming from di↵erent anal-
ysis techniques. The unique case where the tension reaches
⇠ 2� tension is for the Hrs parameter for the CMASS sam-
ple, where the prediction from the power spectrum BAO
analysis is about . 2� higher than those predictions from
both RSD analyses. This tension was already reported in
Gil-Maŕın et al. (2016b) when comparing the pre-recon with
the post-recon best-fitting values (see ↵k values of table 3 in
Gil-Maŕın et al. 2016b). In particular this mild tension is re-
lated to the shift in the BAO peak position in the µ2-moment
of the pre-reconstructed and post-reconstructed data cata-
logue. If we were plotting the pre-reconstruction prediction
(which would be coming from the exact same data-set as
the RSD analysis) the tension between the RSD analysis
and BAO for the Hrs parameter would be reduced to  1�,
as the Hrs best-fitting value form the pre-recon data-set is

lower than Hrs best-fitting value from the post-recon data-
set. Therefore, this discrepancy has its origin in the e↵ect
of the reconstruction process in the anisotropic signal of the
data and is likely to be just statistical. We believe that such
large e↵ect is not caused by systematic e↵ects in the recon-
struction process. Such potential systematics were quantified
in (Gil-Maŕın et al. 2016b), and resulted negligible compared
to the statistical budget.

8.5 Comparison with other galaxy surveys

In this section we compare our measurements on f�8 for the
LOWZ and CMASS with the f�8 values reported by other
surveys at redshifts, along with Planck15 predictions.

Fig. 17 compares our measurements of f�8 (red sym-
bols), with those from the 6dFGS by Beutler et al. (2012),
SDSS Main Galaxy Sample by Howlett et al. (2015), SDSS
Luminous Red Galaxies by Oka et al. (2014), WiggleZ by
Blake et al. (2012); and VIPERS by de la Torre et al. (2013).
A brief description of each of these measurements was pre-
sented in section 7.3 of Gil-Maŕın et al. (2016a), and we do

MNRAS 000, 1–34 (2016)
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Cross-correlation galaxy-void

u Cosmic voids are interesting objects, to 
some extent simpler to model (linear)

u Used for RSD and Alcock-Pazcynski testNew test of growth of structure

Anisotropic void profiles 
normalised to void radius

New constraints on the 
growth rate of structure

�X CNRS-CSIC, Madrid, 14-15 Sept. 2015
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Fig. 19. A plot of f�8 versus redshift, showing VIPERS result contrasted with a compilation of recent measurements. The previous results from
2dFGRS (Hawkins et al. 2003), 2SLAQ (Ross et al. 2007), VVDS (Guzzo et al. 2008), SDSS LRG (Cabré & Gaztañaga 2009; Samushia et al.
2012), WiggleZ (Blake et al. 2012), BOSS (Reid et al. 2012), and 6dFGS (Beutler et al. 2012) surveys are shown with the di↵erent symbols (see
inset). The thick solid (dashed) curve corresponds to the prediction for General Relativity in a ⇤CDM model with WMAP9 (Planck) parameters,
while the dotted, dot-dashed, and dot-dot-dashed curves are respectively Dvali-Gabadaze-Porrati (Dvali et al. 2000), coupled dark energy, and
f (R) model expectations. For these models, the analytical growth rate predictions given in di Porto et al. (2012) have been used.
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Fig. 18. Marginalized likelihood distribution of f�8 in the data (solid
curve) and distribution of fitted values of f�8 for the 26 individual Mul-
tiDark simulation mocks (histogram). These curves show a preferred
value and a dispersion in the data that is consistent at the 1� level with
the distribution over the mocks.

as expected given the minimum scales we consider, although in
the case of model B the change in f�8 is at most 5%. Includ-
ing smaller scales in the fit reduces the statistical error but at

the price of slightly larger systematic error. Therefore from this
test we decided to use model B and a compromise value for the
minimum scale of smin = 6 h

�1 Mpc.

7.5. The VIPERS result for the growth rate

These comprehensive tests of our methodology give us con-
fidence that we can now proceed to the analysis of the real
VIPERS data and expect to achieve results for the growth rate
that are robust, and which can be used as a trustworthy test of
the nature of gravity at high redshifts.

As explained earlier, we assume a fixed shape of the mass
power spectrum consistent with the cosmological parameters ob-
tained from WMAP9 (Hinshaw et al. 2012) and perform a max-
imum likelihood analysis on the data, considering variations in
the parameters that are not well determined externally. The best-
fitting models are shown in Fig. 17 when considering either a
Gaussian or a Lorentzian damping function. Although the mock
samples tend to slightly prefer models with Lorentzian damping
as seen in Fig. 16, we find that the Gaussian damping provides
a much better fit to the real data and we decided to quote the
corresponding f�8 as our final measurement.

We measure a value of

f (z = 0.8)�8(z = 0.8) = 0.47 ± 0.08, (32)

which is consistent with the General Relativity prediction in a
flat ⇤CDM Universe with cosmological parameters given by
WMAP9, for which the expected value is f (0.8)�8(0.8) = 0.45.
We find that our result is not significantly altered if we adopt
a Planck cosmology (Planck Collaboration et al. 2013) for the
shape of the mass power spectrum, changing our best-fitting f�8
by only 0.2%. This shows that given the volume probed by the
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Figure 8. Comparison of 5 f8 (I) results to other measurements. Top panel shows the comparison with other estimates from SDSS data. The 5 f8 results from
this work (red circles) are compared to constraints using voids (open circles) and conventional clustering techniques (filled squares) from eBOSS DR16 and
BOSS DR12. For our measurements, we display the error contribution resulting from the RSD modelling uncertainty only by the outer error bars between caps.
For DR16 datasets, we display the final consensus results (orange squares) from the LRG+CMASS sample (Bautista et al. 2021; Gil-Marín et al. 2020), the
ELG sample (Tamone et al. 2020; de Mattia et al. 2021) and the QSO sample (Hou et al. 2021; Neveux et al. 2020) to be compared to LRG voids, ELG voids
and QSO voids, respectively. The constraint from a complementary void analysis performed on the eBOSS DR16 LRG+CMASS (Nadathur et al. 2020) is also
displayed. For DR12 datasets, we report 5 f8 measurements from galaxy clustering in BOSS (brown squares: Alam et al. 2017) with results from voids (open
green and turquoise circles: Hamaus et al. 2017; Achitouv 2019; Nadathur et al. 2019; Hamaus et al. 2020). Bottom panel shows the comparison of 5 f8 results
from this work (red circles) with other measurements using voids, in 6dFGS (open magenta circle: Achitouv et al. 2017), in VIPERS (open dark blue circle:
Hawken et al. 2017) and in BOSS DR12 (open green and turquoise circles: Hamaus et al. 2017; Achitouv 2019; Nadathur et al. 2019; Hamaus et al. 2020).
We also compare with conventional clustering measurements in the 6dFGS (Beutler et al. 2012), the WiggleZ (Blake et al. 2011), the BOSS DR12 (Alam
et al. 2017), the VIPERS (Pezzotta et al. 2017) and the FastSound (Okumura et al. 2016) surveys. We report results from the eBOSS DR16 companion papers
(orange squares, see references above). We overplot predictions for flat ⇤CDM cosmological model assuming ⌦< = 0.31 and f8 = 0.81.
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Figure 4. Monopole (left) and quadrupole (right) moments of the void-galaxy correlation function measured in the data sample and the mocks using the
methods described in Section 3. The solid blue line shows the mean of the 1000 EZ���� measurements and the shaded blue region indicates the standard
deviation around this, which is an estimate of the error on a single realisation. Points are for the DR16 LRG data, with error bars derived from the EZ�����. The
dashed and dot-dashed lines show the means of the 84 N������ and 1000 MD-P����� mocks respectively at a lower e�ective redshift. N������ and MD-P�����
di�er from the EZ����� and data in galaxy =(I) and bias, which changes the mean void size as visible in the monopole. All multipole measurements have a
dependence on V; the DR16 and EZ���� data is shown for the fiducial Vfid = 0.35 for this sample while the N������ and MD-P����� measurements are for
Vfid = 0.40 appropriate for the lower redshift BOSS CMASS sample.

in the void; this is also the circumcentre of the positions of the
galaxies with the four largest Voronoi cells in each zone, and is the
most robust estimate of the true location of the minimum of the total
matter density in the void (Nadathur & Hotchkiss 2015). Void sizes
are characterised by an e�ective radius, 'E , corresponding to the
radius of a sphere of equal volume to the void (although individual
voids are in general not spherical).

While the publicly released version of REVOLVER can be di-
rectly applied to the N������ mocks, its use for the composite
eBOSS+CMASS sample—or for the EZ���� and B��MD mock
samples created to match it—requires several important modifica-
tions. The first of these is because of the complex survey geome-
try caused by the di�erent eBOSS and CMASS survey footprints
(Fig. 1). The eBOSS galaxies cover a smaller sky area but extend
to redshifts I = 1, whereas there are almost no CMASS galaxies at
I > 0.75. We account for this di�erence by modifying the placement
of the shell of bu�er particles to correctly enclose the composite
survey volume.

A second important e�ect arises because, as shown in Fig. 2,
the selection function for the combined sample is not uniform across
the sky. Within the region common to both CMASS and eBOSS
footprints, =(I) at I = 0.6 is a factor of ⇠ 1.5 larger than that in the
region outside the eBOSS footprint, and this di�erence increases
significantly with redshift. We estimate the mean galaxy density
as a function of redshift separately for galaxies inside and outside
the eBOSS footprint, denoted =in (I) and =out (I) respectively. The
redshift weights applied by REVOLVER correct for this variation
of the local mean density; we therefore modify the algorithm to
determine the redshift weights to apply using either =in (I) or =out (I)
depending on the position of the galaxy within or outside the eBOSS
footprint.2

After applying these changes, the operation of the void-finder

2
REVOLVER also uses an estimate of the total volume of the survey in

converting normalised Voronoi volumes to true units for determining void
sizes; this step is also corrected to account for the position-dependent depth
in calculating the volume of the composite survey.

results in a catalogue of on average 4700 voids across both galactic
caps (with the exact number identified changing by up to ±100, or
⇠ 2%, depending on the value of V used for reconstruction, in the
prior range [0.15, 0.55]). The redshift distribution of the resultant
voids is shown in Fig. 2, and their size distribution in Fig. 3. To these
catalogues we apply a size cut, selecting voids with e�ective radius
greater than the median value for the sample for the final analysis.
This cut corresponds to 'E > 49 ⌘

�1Mpc, and is equivalent to the
cut previously applied in the BOSS void analysis (Nadathur et al.
2019a). The sample selected for correlation measurements therefore
contains on average 2350 voids. This cut to include only large voids
that dominate the dynamics of their local environment is made
to ensure the validity of the assumptions made in the modelling,
described in Section 4 below.

3.3 Correlation estimator

The primary observable studied in this work is the void-galaxy cor-
relation function, measured as a function of the observed redshift-
space separation between void and galaxy positions, B, and the co-
sine of the angle between the void-galaxy pair and the line of sight
`. We estimate this correlation using the Landy-Szalay estimator
(Landy & Szalay 1993):

b
B (B, `) = ⇡1⇡2 � ⇡1'2 � ⇡2'1 + '1'2

'1'2
(1)

where each term -. refers to the number of pairs for the given
populations in the (B, `) separation bin, normalized by the e�ective
total number of such pairs (henceforth we drop the subscript vg
from b as the context is clear). Here ⇡1 refers to the void centre
positions, ⇡2 to the galaxies, and '1 and '2 to the correspond-
ing sets of random points for the void and galaxy catalogues. The
galaxy random catalogue '2 is constructed to provide an unclus-
tered set of points, matching the angular and redshift distribution of
the observed eBOSS+CMASS galaxies and including appropriate
weights to describe observational systematics (Ross et al. 2020),
and exceeding the number of galaxies by a factor of 50 (20 for
the EZ�����). To construct the appropriate random catalogue '1

MNRAS 000, 1–19 (2020)
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Galaxy-galaxy lensing
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RSD and galaxy-galaxy lensing

de la Torre et al. 2017

u Weak lensing and galaxy clustering
allows breaking the classical f-𝜎8-b
degeneracy in GC

Structrure
growth rate

𝜎8

𝑏𝑖𝑎𝑠

Directly
probing
structure 
growth



RSD and galaxy-galaxy lensing

u An alternative test of gravity
related to the gravitational slip 
parameter

u Independent of galaxy bias

€ 

∝
b
f
ΩM 0

b
≈
ΩM 0

f

€ 

EG ≡
∇2 ψ −φ( )
3H0

2a−1βδ
=
1
β

Υgm

Υgg

Jullo, de la Torre et al., 2019



Euclid: a space 
mission to solve dark 
energy

u Euclid is an ESA space mission aiming at: 

u 3D mapping of 50 million galaxies 
over 15,000 deg2 wih slitless
spectroscopy in space 

u A survey of the shapes of over 2 
billion galaxies on the same surface

u The aim is to trace the structure of the 
Universe, both visible (galaxies) and 
invisible (dark matter), to understand 
the nature of dark energy

Euclid Satellite: end of assembly in 
Turin in July 2022



Euclid mission

u Next-generation galaxy surveys designed to extract most of the cosmological information: 
large probed volumes, sufficiently high galaxy/quasars sampling rate, multitracer, 
multiprobe…

With Euclid (& DESI) we expect: 
• Sub-percent accuracy on the BAO scale
• Percent accuracy on the growth rate of

structure and 𝛾

à Crucial to solve the Dark Energy problem

Euclid will use weak lensing and galaxy clustering to 
measure the expansion history of the Universe, the 
dark energy equation of state, and the growth rate 
of structure to within typically one percent accuracyG
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u Euclid will allow testing gravity and 
cosmology beyond standard model, e.g. be
sensitive to modified gravity or DE models

Ishak et al, 2018

Growth of structure / gravity

Euclid Forecast on the 
growth of structure

Euclid mission
Euclid Consortium

Euclid



Euclid era cosmology: combinations & 
cross-correlations

u Combination of galaxy clustering and weak
lensing significantly increases the FoM

u Impact of cross-correlations is particularly
relevant for models beyond a cosmological
constant 

Euclid Collaboration et al.: Euclid preparation: VII. Forecast validation for Euclid cosmological probes
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Fig. 12: Fisher-matrix-marginalised contours for the Euclid space mission for a w0,wa cosmology, for a flat cosmology and with an optimistic
setting, of the photometric survey GCph + WL with (dark red) and without (blue) their cross-correlation term XC. The combination in
yellow is the same as in Fig. 10 and includes all probes.

Table 15: Same as Table 9 for a non-flat w0,wa, � cosmology.

w0,wa,� non-flat
⌦m,0 ⌦DE,0 ⌦b,0 w0 wa h ns �8 �

Linear setting

GCs 0.11 0.075 0.13 0.28 0.92 0.0073 0.036 0.028 0.20

Pessimistic setting

GCs 0.18 0.11 0.27 0.40 1.5 0.029 0.070 0.050 0.33

WL 0.055 0.57 0.50 0.25 1.9 0.23 0.037 0.029 1.1

GCs+WL 0.033 0.055 0.068 0.12 0.55 0.0068 0.0092 0.013 0.076

Optimistic setting

GCs 0.072 0.090 0.10 0.25 0.98 0.0040 0.021 0.027 0.26

WL 0.038 0.33 0.44 0.22 0.96 0.21 0.033 0.022 0.82

GCs+WL 0.023 0.035 0.040 0.084 0.33 0.0030 0.0057 0.0095 0.067
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Fig. 13: Marginalised 1� errors on cosmological parameters, relative to their corresponding fiducial values for a flat (upper panels) and non-flat
(lower panels) spatial geometry, in (w0,wa, �) cosmology. Left (right) panels correspond to pessimistic (optimistic) settings, as described
in the text. The histogram refers to different observational probes: GCs (purple), WL (blue), GCs+WL (orange); none of the available
codes allow us to include GCph or cross-correlation, while also allowing � to vary. For wa we show the absolute error, since a relative error
is not possible for a fiducial value of 0.
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Challenges

u Control systematics to extremely small level: e.g. non-linear modelling, 
observational effects (slitless spectroscopy), second-order effects usually
neglected (magnification, IA, relativistic effects, baryons)

u Combine LSS probe and tracers in a consistent way : covariances, systematic
error assessment, etc.

Slitless spectroscopy



Precision cosmology with galaxy 
clustering

u Galaxy clustering cosmology is mature but still, methods need further
refinement to reach the exquisite statistical accuracy provided by next-
generation cosmological surveys

Report of the
Galaxy Clustering
Systematic Error

Budget Tiger Team

Doc.No.:
Issue:
Date:
Page:

EC-???-???
0
September 25, 2018
72 of 84

Systematic effect Responsible impact impact Maturity
WP or group on BAO on RSD of mitigation

Photometric calibration WP2 small small high
Milky Way extinction WP2 small small high
Redshift measurement error WP1 small medium? high
Confusion from overlapping spectra WP2 unknown unknown low
Deep field WP2 small? small? low
Clustering estimators: power spectrum OU-LE3 small small high
Clustering estimators: two-point correlation function OU-LE3 small small high
Clustering estimators: wide-angle effects WPX small small high
Reconstruction WP4 large none medium
Nonlinear evolution of dark-matter none medium large medium
Redshift-space distortions none low large low
Galaxy density bias none low large low
Massive neutrinos none low large medium
Galaxy velocity bias none low large low
Variations of model template with cosmology WP4? low unknown low
Lightcone & projection effects WPX low? low? low
Relative velocity and density perturbations between none small? small? small?baryons and dark matter
Noise in the covariance matrix WP3 small small high
Biased estimates of the covariance matrix WP3 small-med? small-med high
Cosmology dependence of the covariance matrix WP3 small? small low
Incorrect shape of the likelihood function WP3 unknown unknown low
Combination of results from multiple statistics WP3 small small high

Table 8: Summary of the systematic errors described Section 4. The columns indicate the WP or group within the EC that
should be responsible for a detailed analysis of each effect, and an estimate of the impact they might have on
post-reconstruction BAO-only measurements and pre-reconstruction full-shape RSD analyses, classified as small
(�sys{�stat † 0.2), medium (0.2 † �sys{�stat † 0.45), and large (�sys{�stat ° 0.45). The last column gives a
qualitative statement about the maturity of the mitigation strategy for each systematic.

Table 9: Work packages of the Galaxy Clustering science working group as of June 2017. The WP numbers listed here are
used as a reference throughout the document.

WP number WP name
WP1 Sample selection
WP2 Survey mask
WP3 Likelihood fitting
WP4 Reconstruction
WP5 Higher-order statistics
WP6 Additional Probes
WP7 Photo-z clustering
WP8 Link to simulations
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RSD beyond Doppler



Impact of magnification on RSD

u Impact in the worst case mostly on large 
scales, but anisotropic

u Generally, linear correction is good enough
for galaxy clustering

u Weak lensing limit may break down for 
some cases (high redshift and s)

Michel-Andrès Breton et al.: Impact of lensing magnification on RSD

Fig. 1. Multipoles of the correlation function (monopole, quadrupole
and hexadecapole from top to bottom panels) when accounting for RSD
only (red) with CLPT-GS, RSD and lensing (blue) or RSD and a flat-
sky implementation of the lensing contribution. We consider a ⇤CDM
model with galaxy bias equal to unity and s = 1.2 at z = 1.8.

Model ⌦m �8 w

⇤CDM 0.25733 0.80101 -1.0
wCDM 0.27508 0.85205 -1.2

Table 1. Cosmological parameters, that is ⌦m the total matter density,
�8 the power spectrum normalisation at z = 0, and w the redshift-
independent equation of state for the ⇤CDM and wCDM cosmologies
of RayGal. In both cases we consider flat models, that is ⌦k = 0, with
reduced Hubble parameter h = 0.72, the baryon density ⌦b = 0.04356,
the radiation density ⌦r = 8 ⇥ 10�5 and the spectral index ns = 0.963.

cosmologies have di↵erent ⌦m and �8, and therefore di↵erent
values of f�8(z), since f ⇡ ⌦m(z)0.545 in General Relativity
(REF). This can be seen in Fig. 2, where the fiducial values of
f�8 as a function of redshift for the two cosmologies, as well as
the expectations from Planck Collaboration et al. (2016) ⇤CDM
best-fitting model assuming General Relativity are shown. Inter-
estingly, the values of f�8(z) for the RayGal ⇤CDM (wCDM)
model are close to Planck ones at high (low) redshift. It is worth
emphasising the importance of analysing simulations with dif-
ferent cosmologies, since we can analyse them blindly assuming
a fiducial cosmology, as in observations, and see whether one
can recover unbiased estimates of the growth rate of structure.

3.1.1. RayGal light-cones

Several light-cones have been extracted from the RayGal simu-
lations. In the present work, we use light-cones with an aperture
of 2500 deg2 extending to z = 2, which encompasses the red-

Fig. 2. Evolution of the growth rate of structure as a function of redshift,
for the Planck Collaboration et al. (2016) cosmology in black (with the
error bars shown in grey), as well as the two cosmologies (⇤CDM in
purple, wCDM in cyan) of the RayGal simulations until z = 2.

shift range probed by DESI (DESI Collaboration et al. 2016) and
Euclid (Laureijs et al. 2011) surveys. Those light-cones contain
DM particles, as well as DM haloes identified with the parallel
Friend-of-Friend algorithm pFoF (Roy et al. 2014), using a link-
ing length of b = 0.2. We imposed a minimum of 100 particles
per halo, which leads to halos with mass above 1.8 ⇥ 1012

M�.
The gravitational lensing information is computed in the

light-cones by using the ray-tracing library Magrathea (Reverdy
2014). The latter implements an iterative algorithm that finds
the null geodesics connecting the observer to each source (Bre-
ton et al. 2019), that is, either particles or haloes. This allows
the computation of RSD and lensing e↵ects at the same time,
in a general and accurate way. It is important to emphasize the
fact that the treatment of gravitational lensing does not involve
the Born approximation, which is often used. In our light-cones,
we have roughly 1.2 ⇥ 107 haloes for both cosmologies and we
ray-trace about 4⇥108 randomly selected particles. Having both
haloes and particles enable us to perform a redshift-space clus-
tering analysis on a biased population for the former (and hence,
closer to observations), and for the latter, to carry out a precise
study where the number of matter tracers is maximised.

In Fig. 3, we show the redshift distribution of the halo and
particle samples in the ⇤CDM light-cone, as well as the adopted
tomographic redshift bins. The distributions in the wCDM light-
cone are very similar. The tomographic redshift bins cover a sim-
ilar redshift range as present and future galaxy cosmological sur-
veys, a regime where gravitational lensing e↵ects on galaxy clus-
tering start to be significant (at about z > 1). Regarding the shape
of the redshift distribution, we see for particles that it monotoni-
cally increases, as expected in the case of constant density. One
may however remark that at about z = 2, the N(z) seems to de-
crease. This is an edge e↵ect due to the fact that we built our
light-cones up to z ⇠ 2. To avoid any issue, we use in our anal-
ysis a maximum redshift of zmax = 1.95. For halos, the N(z)
reaches a maximum at around z = 1.2 and later decreases. This
can be explained by the combined e↵ect of the halo formation
and limited mass resolution in the simulation. We do not impose
any further selection in redshift to avoid discarding too many
objects from our samples, and thus maximise RSD and lensing
magnification signals.

Article number, page 5 of 15

Breton, de la Torre 2022
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Conclusion

u Understanding gravity on cosmological scales 
is key to understand Dark Energy and cosmic 
acceleration

u LSS observations from galaxy and lensing 
survey are crucial to get insights on the 
strength of gravity through the 
characterization of the growth of structure

u Future large spectroscopic+lensing surveys 
such as DESI and Euclid will allow to make a 
big step towads understaning gravity on 
cosmological scales and cosmology

u Galaxy clustering and lensing observables are 
interconnected, and be efficiently combined
to improved constraints constraints

u Importance of controling systematic errors in 
surveys at exquisite level to achieve this goal





Cosmological tensions: S8

u Discrepancies between CMB and 
weak-lensing constraints on S8:

u Τhe S8 tension is at about 2.6𝜎 level
between the Planck data in the 
ΛCDM scenario and KiDS survey

u Mainly driven by 𝜎", which is lower
in lensing analyses

The S8 tension – The standard ⇤ Cold Dark Matter (⇤CDM) cosmological model provides an amazing
fit to current cosmological data. However, some statistically-significant tensions in cosmological parameter
estimations emerged between the Planck experiment, measuring the Cosmic Microwave Background (CMB)
anisotropies, and other low-redshift cosmological probes. In addition to the long standing Hubble constant

H0 disagreement, a tension of the Planck data with weak lensing measurements and redshift surveys has
been reported, about the value of the matter energy density ⌦m, and the amplitude or rate of growth of
structure (�8, f�8). Although this tension could be due to systematic errors, it is worthwhile to investigate
the possibility of new physics beyond the standard model. The tension can be visualized in the �8 vs ⌦m

plane (see Fig. 1) and is often quantified using the S8 ⌘ �8

p
⌦m/0.3 parameter, along the main degeneracy

direction of weak lensing measurements. This can be also related to f�8(z = 0), measured by galaxy
redshift space distortions (RSD)1;2, where f = [⌦m(z)]0.55 approximates the growth rate.

Figure 1: 68% CL and 95% CL contour plots for
�8 and ⌦m(from Ref.3).

The mismatch between the high S8 value estimated
by Planck assuming ⇤CDM (grey contour in Fig. 1),
S8 = 0.834 ± 0.0161, and the lower value preferred
by cosmic shear measurements, it is known as the S8

tension. This tension is above the 2� level with KiDS-
4504–7 (S8 = 0.745± 0.039) and KiDS-450+2dFLenS8

(S8 = 0.742 ± 0.035), with KiDS+VIKING-450
(KV450)9 (S8 = 0.737+0.040

�0.036), with DES10;11 (S8 =

0.783+0.021
�0.025), and with CFHTLenS12–14. Recently,

KiDS-10003 reported a ⇠ 3� tension (S8 = 0.766+0.020
�0.014,

red contour in Fig. 1) with Planck. This is already obvi-
ous from cosmic shear alone15, but when combined with
galaxy clustering, the degeneracy breaking between �8

and ⌦m does not change the tension level. Therefore,
the combined analysis helps in pointing out that the ten-
sion, at 3.1� in this case, is driven by �8 rather than
⌦m. In addition, there is the Lyman-↵ result16, a late
time probe probing scales similar to weak lensing, com-
pletely in agreement with a lower S8 value and in tension
at ⇠ 2.6� with Planck. The tension becomes 3.2� if we consider the combination of KV450 and DES-
Y117;18 or 3.4� for BOSS+KV45019 (S8 = 0.728 ± 0.026, blue contour in Fig. 1). Preferring a higher
value for the S8 parameter there is also the measurement from the first-year data of HSC SSP20, for which
S8 = 0.804+0.032

�0.029 (see Fig. 2), but also KiDS-450+GAMA21 finding S8 = 0.800+0.029
�0.027. Finally, in agree-

ment with a lower value S8 = 0.703±0.045 there is an estimate from the BOSS Galaxy Power Spectrum22.

It has been pointed out in23 that this tension could be related to the excess of lensing measured by
Planck, mimicking a larger S8. However, also ACT+WMAP24 find a large S8 = 0.840 ± 0.030 even if
it does not see a peculiar value for the lensing amplitude, while SPTpol25 and the Planck CMB lensing 26

measurements prefer a lower value. Another possibility is the misuse of the units h�1Mpc in observational
cosmology in27. It might be worth mentioning that, while weak lensing analyses are carried out with a
blinding procedure for KiDS, DES and HSC, the CMB analyses are either not blind or only partially blind.

Conjoined history problem – The H0 disagreement is correlated to the �8 problem, indeed the solutions
proposed to alleviate the first one, are exacerbating the CMB tension with the lower �8 values obtained from
more direct measurements, such as galaxy clusters using the Sunyaev-Zel’dovich effect28–30, i.e. measuring
the number of clusters of a certain mass M over a range of redshift.

1All the bounds are reported at 68% confidence level in the text.

4

Heymans et al. 2020

A tension on S8 is present between the Planck data in the ΛCDM scenario 
and the cosmic shear data.

S8 tension



Cosmological tensions: H0

u 3-4𝜎 discrepancy beteween Planck/LSS 
contraints and local direct measurements
from SN1a/cepheids

u In the CMB, constraints are obtained by 
assuming a cosmological model and are 
therefore model dependent

u Planck constraints change when modifying
the assumptions of the underlying
cosmological model

u Local distance ladder measurements based
on the combination of different geometric
distance calibrations of cepheids

CMB:    H0 = 67.27 ± 0.60 km/s/Mpc in ΛCDM
BAO+Pantheon+BBN+θMC, Planck: H0 = 67.9 ± 0.8 km/s/Mpc


SH0ES:   H0 = 74.03 ± 1.42 km/s/Mpc

Strong Lensing: Multiply-imaged quasar systems through strong gravitational 
lensing made by the H0liCOW collaboration   H0 = 73.3 +1.7 -1.8 km/s/Mpc

!17
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The metric reads (Ma & Bertschinger 1995)

gµνdxµdxν = a(η)2 [−(1 + 2ψ/c2)c2dη2

+ (1 − 2φ/c2)δij dxidxj
]
, (1)

where a is the expansion factor, c is the speed of light, δij is the
Kronecker delta, ψ and φ the Bardeen potentials (Bardeen 1980), x
is the comoving position, and η the conformal time. Using kνkν = 0
(where kν are the components of the wavevector) and the lensing
deviation equation we know that the apparent comoving position of
a source is (Challinor & Lewis 2011)

s = χn + c

H
δzn − n

∫ χ

0
(φ + ψ)/c2dχ ′

−
∫ χ

0
(χ − χ ′)∇⊥(φ + ψ)/c2dχ ′, (2)

where n is a unit vector pointing towards the direction from which
the unperturbed photon is coming and χ is the unperturbed comov-
ing distance of the source. On the right-hand side the first term
x = χn is the unperturbed comoving position of the source, the
second term is the distance perturbation along the line of sight due
to redshift perturbation δz. The third term is the (small) Shapiro
effect and the last term is the transverse displacement due to
lensing.

For the redshift perturbation we will consider the usual first-order
terms plus the special relativistic transverse Doppler effect that can
be a non-negligible fraction of the gravitational redshift at small
scales (Zhao et al. 2013)

δz = a0

a

{
v · n

c
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2

(v
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)2
− 1
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∫ η0

η

∂(φ + ψ)
∂η

dη′
}

,

(3)

where v is the velocity and φ the potential. Quantities with the
subscript ‘0’ are evaluated at the observer location today. In the
above expression, we have assumed a comoving observer. Assuming
mass conservation gives
(
1 + δ(s)(s)

)
d3s =

(
1 + δ(x)(x)

)
d3x, (4)

where δ(s) and δ(x) are the matter density contrast in redshift space
and real space, respectively. We have

δ(s) =
(
1 + δ(x)) |J |−1 − 1, (5)

where J is the Jacobian of the transformation from real space to
redshift space.

2.2 Two-point halo–halo cross-correlation function: linear
theory

The halo–halo cross-correlation function between two halo popula-
tions h1 and h2 is given by

ξh1h2 ( %r2 − %r1) = 〈δh1 ( %r1)δh2 ( %r2)〉, (6)

with δhi
(%ri) the overdensity of population i and 〈〉 the ensemble

average. The cross-correlation function is related to the cross-power
spectrum through
〈
δ

(s)
h1

(k1)δ(s)∗
h2

(k2)
〉

=
∫

d3s1d3s2

〈
e−ik1 s1 eik2 s2δ

(s)
h1

(s1)δ(s)
h2

(s2)
〉

,

(7)

where δ(s)(ki) is the Fourier transform of δ(s)(si). To rewrite this ex-
pression in terms of real space quantities we can use equations (4)
and (5). Equation (7) is the general formula for the power spec-
trum in redshift space but this leads to complicated mode couplings

(Zaroubi & Hoffman 1996). In the linear regime, we can linearize
the mapping between real and redshift space,

)(s) = )(r) + 1 − |J |, (8)

where we use ) to denote the galaxy number count as an observ-
able thus gauge invariant quantity. Assuming no velocity bias, the
observed galaxy number count is given by the sum of the following
terms (Bonvin & Durrer 2011; Challinor & Lewis 2011; Bonvin
et al. 2014; Tansella et al. 2018)

)std = bδ − 1
H

∇r (v · n), (9)

)acc = 1
Hc

v̇ · n, (10)

)q = − Ḣ
cH2 v · n, (11)

)div = − 2
Hχ

v · n, (12)

)pot,(1) = 1
Hc

∇rψ · n, (13)

)pot,(2) =
(

Ḣ
H2 + 2c

Hχ

)
ψ/c2 − 1

Hc2
ψ̇, (14)

)shapiro = (φ + ψ)/c2, (15)

)lens = − 1
c2

∫ χ

0

(χ − χ ′)χ ′

χ
∇2

⊥(φ + ψ)dχ ′, (16)

)isw = 1
Hc2

(φ̇ + ψ̇), (17)

)LC = v · n/c, (18)

with δ the matter density contrast and b a scale-independent bias.
)std is the standard contribution to RSD (Kaiser 1987), )acc the
contribution from the acceleration of sources, )q the contribution
related to the acceleration of the expansion of the universe, )div

the contribution from the divergence of line of sights due to a finite
observer, )pot,(1) the contribution from the gravitational redshift at
first order in H/k, )pot,(2) the contribution of the dominant terms in
(H/k)2 to the gravitational redshift, )shapiro the contribution from
the Shapiro time delay, )isw the contribution from the Integrated
Sachs–Wolfe effect, )lens the lensing contribution equal to the lens-
ing convergence as light-beam deformations modify the apparent
source distribution, and )LC the light-cone contribution as the ob-
served position of sources on the light cone is different from their
position on constant-time hypersurfaces due to peculiar velocities
(Bonvin et al. 2014). A more refined calculation of this effect is
given in Kaiser (2013). We neglect the following terms, which are
the subdominant (H/k)2 terms:

)neglect =
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Ḣ
H2 + 2c
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1
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∫ η0
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+ 2
χc2

∫ χ

0
(φ + ψ)dχ ′. (19)
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u Apparent comoving position of a source:

u Redshift perturbations:

u Effects usually neglegted, but detectable with next-generation surveys such
as Euclid or DESI 
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Magnification correction

u Generally, linear correction is good 
enough for galaxy clustering

u Weak lensing limit may break down 
for some cases (high redshift and s)

Michel-Andrès Breton et al.: Impact of lensing magnification on RSD

Fig. A.1. Absolute di↵erence on the correlation function multipoles
for DM particles at the highest redshift bin (that is, z = 1.6 � 1.95),
when accounting for magnification bias, with respect to the case where
we have RSD only. The red and green (purple and blue) points refer
to the monopole and quadrupole in ⇤CDM (wCDM), while the red,
green and black lines show the ⇤CDM theoretical prediction for the
monopole, quadrupole and hexadecapole computed with Coffe. Only
for the ⇤CDM case we show the hexadecapole, as the results for the
wCDM model are very similar and in any do not impact much the like-
lihood analysis.

Appendix A: Magnification bias modelling on the

correlation function multipoles

In this appendix we focus in more detail on the e↵ect of magni-
fication bias on the multipoles of the correlation function. To do
so, we consider the highest redshift bin (so as to maximise the
lensing signal) with DM particles (to reduce the noise). The re-
sults on the absolute di↵erence on the monopole and quadrupole
of the correlation function due to the e↵ect of magnification are
shown in Fig. A.1. First, we notice that in any case, that is for
s = 0 or 1.2, ` = 0 or 2, and ⇤CDM or wCDM, the lensing con-
tribution to the correlation function is positive. It is interesting
since it explains why if lensing magnification is not incorporated
in the model, the likelihood analysis will try to compensate by
increasing the value of the bias parameter and therefore lower
the value of the growth rate (as seen in Sect. 4).

Second, for the case with s = 0, that is when we use observed
angles instead of comoving ones, the monopole seem to agree
with the theoretical prediction up to 60 h

�1Mpc only. This is
surprising as we would expect on the contrary a good agreement
at large scales. This di↵erence might be due to the large variance
inherent to these scales or an inaccuracy in the modelling as well
as the non-linearity of lensing corrections (see also Hui et al.

2007 for a discussion). We also note the remarkable agreement
between data and prediction for the quadrupole.

Third, focusing on the case with s = 1.2 which give the most
significant trend, we see that the e↵ect of magnification bias is
still well modelled for the quadrupole. For the monopole, how-
ever, it seems that there is a factor two between data and pre-
diction at all scales. This comes from the fact that we use the
weak-lensing limit for the theoretical prediction. Indeed, when
we apply the weights from the weak-lensing limit solution, we
see that the monopole agrees well with the theoretical prediction.
As shown in Fig. 4, the exact perturbation to the number counts
due to magnification bias gives a stronger signal than that of its
approximate solution. This discrepancy grows with redshift and
s, and might need to be modelled for future surveys.

Last, we see that in any case the theoretical prediction in
the fiducial ⇤CDM model does not agree very well with the
data from the wCDM simulation. Although the shape is simi-
lar between data points and analytical prediction, the amplitude
is di↵erent (this di↵erence is clear for the monopole, where data
points are consistently at least a factor two above the predic-
tion for s = 1.2). This adds another source of discrepancy with
respect to the theoretical prediction, on top of that due to the
weak-lensing limit. For more precise studies at higher redshift
it will be important to find a way to account for these discrep-
ancies. Nonetheless, even if the present modelling in the fidu-
cial ⇤CDM cosmology is not perfect to analyse the wCDM and
⇤CDM simulations for high values of s, it is still much better
than not accounting at all for lensing magnification.
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