Collective excitations in nuclei: The isoscalar and isovector electric giant resonances and spin-isospin chargeexchange modes

Muhsin N. Harakeh

KVI-CART, University of Groningen, the Netherlands

XVI International Meeting on "Selected Topics in Nuclear and Atomic Physics" Fiera di Primiero, Italy 2-6 October 2017

Vibrations of a liquid drop in weightlessness

Fiera di Primiero, Italy; 2-6 October 2017

 university of groningen In the following: **IS** = **Iso-Scalar IV** = **Iso-Vector** S = SpinG = GiantM = Monopole $\mathbf{D} = \mathbf{Dipole}$ Q = Quadrupole **O** = **Octupole**

e.g., ISGMR = Isoscalar giant monopole resonance ISGDR = Isoscalar giant dipole resonance IVGDR = Isovector giant dipole resonance IVSGMR= Isovector spin giant monopole resonance IVSGDR = Isovector spin giant dipole resonance

The Collective Response of the Nucleus: Giant Resonances

Fiera di Primiero, Italy; 2-6 October 2017

 university of groningen

Operators and Microscopic Structure

Fiera di Primiero, Italy; 2-6 October 2017

✓ university of groningen Microscopic picture: GRs are coherent (1p-1h) excitations induced by single-particle operators.

- Excitation energy depends on

 multipole L (Lħω, since radial operator ∝ r^L; except for ISGMR and ISGDR, 2ħω & 3ħω, respectively),
 strength of effective interaction and
 collectivity.
- Exhaust appreciable % of EWSR
- Acquire a width due to coupling to continuum and to underlying 2p-2h configurations.

Microscopic structure of ISGMR & ISGDR

Transition operators:

 $3\hbar\omega$ excitation (overtone of c.o.m. motion)

Fiera di Primiero, Italy; 2-6 October 2017

university of

Nucleus		Many-bo	dy system	with a finit	te size
Vibratior	is	Multipole expansion with <i>r</i> , Y_{lm} , τ , σ			
	∆S=0, ∆T=0	$\Delta S=0, \Delta T=1$	∆S=0, ∆T=1	$\Delta S=1, \Delta T=1$	$\Delta S=1, \Delta T=1$
<i>L=0</i> : Monopole	ISGMR r^2Y_0	$\mathbf{IAS}\\\boldsymbol{\tau Y}_{\boldsymbol{\theta}}$	IVGMR $\tau r^2 Y_0$	$\frac{\text{GTR}}{\tau\sigma Y_0}$	IVSGMR $\tau \sigma r^2 Y_0$
<i>L=1</i> : Dipole	ISGDR $(r^3 - 5/3 \langle r^2 \rangle r)$	Y ₁	IVGDR $ au r Y_1$		IVSGDR $\tau \sigma r Y_1$
<i>L=2</i> : Quadrupo	ble ISGQR r^2Y_2		IVGQR $\tau r^2 Y_2$		IVSGQR $\tau\sigma r^2 Y_2$
<i>L=3</i> : Octupole LEOR, HEOR r^3Y_3			Dropped $\Delta S=1$, $\Delta T=0$ operators because excitations are very weak		

Fiera di Primiero, Italy; 2-6 October 2017

9

re

university of groningen

Decay of giant resonances

- Width of resonance
 - $\Gamma, \Gamma^{\uparrow}, \Gamma^{\downarrow} (\Gamma^{\downarrow\uparrow}, \Gamma^{\downarrow\downarrow})$
 - Γ[↑]: direct or escape width
 - Γ¹: spreading width
 - $\Gamma^{\downarrow\uparrow}$: pre-equilibrium, $\Gamma^{\downarrow\downarrow}$: compound
- Decay measurements
 - \Rightarrow Direct reflection of damping processes

Allows detailed comparison with theoretical calculations

Energy-Weighted Sum Rules

Fiera di Primiero, Italy; 2-6 October 2017

✓ university of groningen

Intermezzo: Sum rules

Consider the most general electric multipole operator (Bohr & Mottelson 69), neglecting the current term:

$$\mathcal{M}(E\lambda,\mu) = \frac{(2\lambda+1)!!}{q^{\lambda}(\lambda+1)} \int \rho(\vec{r}) \frac{\partial}{\partial r} (rj_{\lambda}(qr)) Y_{\lambda\mu}(\hat{r}) d\tau$$
$$j_{\lambda}(qr) = \frac{(qr)^{\lambda}}{(2\lambda+1)!!} \left(1 - \frac{1}{2} \frac{(qr)^2}{(2\lambda+3)} + \cdots\right) \qquad \text{Bessel function}$$

This leads in 1^{st} order (long-wave length limit, i.e. $qr \ll 1$):

$$\mathcal{M}(E\lambda,\mu) = \frac{(2\lambda+1)!!}{q^{\lambda}(\lambda+1)} \int \rho(\vec{r}) \frac{\partial}{\partial r} \left(\frac{r(qr)^{\lambda}}{(2\lambda+1)!!}\right) Y_{\lambda\mu}(\hat{r}) d\tau$$

$$\mathcal{M}(E\lambda,\mu) = \int \rho(\vec{r})r^{\lambda} Y_{\lambda\mu}(\hat{r})d\tau$$

Using
$$\rho(\vec{r}) = \sum_{k} e\left(\frac{1}{2} - t_{zk}\right)\delta(\vec{r} - \vec{r}_{k})$$

we get:

$$\mathcal{M}(E\lambda,\mu) = \sum_{k} e\left(\frac{1}{2} - t_{zk}\right) r_{k}^{\lambda} Y_{\lambda\mu}(\Omega_{k})$$
$$\mathcal{M}(E\lambda,\mu) = \frac{1}{2} e \sum_{k} r_{k}^{\lambda} Y_{\lambda\mu}(\Omega_{k}) - e \sum_{k} t_{zk} r_{k}^{\lambda} Y_{\lambda\mu}(\Omega_{k})$$

For the isoscalar E0 and E1, 1st order leads to a constant and c.o.m. coordinate, respectively. Expanding to 2nd order (taking only dependence on r) we get:

$$\mathcal{M}(E0) = \frac{1}{4}e \sum_{k} r_{k}^{2} - \frac{1}{2}e \sum_{k} t_{zk}r_{k}^{2}$$

Isoscalar

$$\mathcal{M}(E1,\mu) = \frac{1}{4}e \sum_{k} r_{k}^{3}Y_{1\mu}(\Omega_{k})$$
Isovector term
neglected

Fiera di Primiero, Italy; 2-6 October 2017

14

university of

Thomas Reiche Kuhn (TRK) sum rule is originally obtained for an atomic system assuming an electric field directed along z-axis: $S_e(E1) = \sum_f (E_f - E_i) |\langle f | \sum_k z_k | i \rangle|^2$

The total absorption cross section is in the long-wave length limit:

$$\int_{0}^{\infty} \sigma(E_{\gamma}) dE_{\gamma} = \frac{4\pi^2 e^2}{\hbar c} \sum_{f} \left(E_f - E_i \right) |\langle f| \sum_k z_k |i\rangle|^2$$

For a Hermitian operator and using closure relation

$$(\sum_{f} |f\rangle < f| = 1)$$
, we obtain:
$$\int_{0}^{\infty} \sigma(E_{\gamma}) dE_{\gamma} = \frac{4\pi^{2}e^{2}}{\hbar c} \frac{1}{2} \langle i | [\sum_{k} z_{k}, [H, \sum_{k} z_{k}]] | i \rangle$$

Fiera di Primiero, Italy; 2-6 October 2017

15

Consider only kinetic term of Hamiltonian:

$$\int_{0}^{\infty} \sigma(E_{\gamma}) dE_{\gamma} = \frac{4\pi^{2}e^{2}}{\hbar c} \frac{1}{2} \left\langle i \right| \left[\sum_{k} z_{k} , \left[\frac{p_{z}^{2}}{2m_{e}}, \sum_{k} z_{k} \right] \right] \left| i \right\rangle$$
$$\int_{0}^{\infty} \sigma(E_{\gamma}) dE_{\gamma} = \frac{4\pi^{2}e^{2}}{\hbar c} \frac{\hbar^{2}I}{2m_{e}}$$

I is number of electrons. For a nucleus (see later):

$$e_{eff}^2 I = Z e_{peff}^2 + N e_{neff}^2 = \frac{NZ}{A} e^2$$

Therefore:

$$\int_{0}^{\infty} \sigma(E_{\gamma}) dE_{\gamma} = \frac{2\pi^{2}e^{2}\hbar}{mc} \frac{NZ}{A} = 60 \frac{NZ}{A} \quad MeV \ mb$$

This is the TRK sum rule for a nucleus.

Fiera di Primiero, Italy; 2-6 October 2017

university of

$$B(E\lambda, J_i \to J_f) = \sum_{\mu M_f} |\langle \Psi_f | \mathcal{M}(E\lambda, \mu) | \Psi_i \rangle|^2$$

$$B(E\lambda, J_i \to J_f) = \sum_{\mu M_f} \langle J_i M_i \lambda \mu | J_f M_f \rangle^2 | \langle \Psi_f \| \mathcal{M}(E\lambda) \| \Psi_i \rangle |^2$$

$$B(E\lambda, J_i \to J_f) = \frac{2J_f + 1}{2J_i + 1} |\langle \Psi_f || \mathcal{M}(E\lambda) || \Psi_i \rangle|^2$$

$$S_{\lambda}(E\lambda) = \sum_{f} (E_{f} - E_{i}) |\langle f | \mathcal{M}(E\lambda, \mu) | i \rangle|^{2}$$

$$\Rightarrow S_{\lambda}(E\lambda) = \frac{1}{2} |\langle i | [\mathcal{M}(E\lambda, \mu), [H, \mathcal{M}(E\lambda, \mu)]] | i \rangle$$

Introducing for $\mathcal{M}(E\lambda,\mu)$ the isoscalar E0, E1 and $E\lambda$ operators, and using a similar procedure as for TRK sum rule (using Hermitian property and closure relation), we obtain the isoscalar E0, E1 and $E\lambda$ energy-weighted sum rules (EWSR).

17 🏅

university of

$$\begin{split} P_{0\mu} &= \frac{1}{2} \sum_{i} r_{i}^{2} \\ \sum_{n} (E_{n} - E_{0}) B(E0, 0 \to n) = S_{0} = \frac{\hbar^{2}}{2m} A < r^{2} > \\ P_{1\mu} &= \frac{1}{2} \sum_{i} r_{i}^{3} Y_{1\mu}(\hat{r}_{i}) \\ \sum_{n} (E_{n} - E_{0}) B(E1, 0 \to n) = S_{1} = \frac{\hbar^{2}}{8\pi m} \frac{3}{4} A[11 < r^{4} > -\frac{25}{3} < r^{2} >^{2} -10\varepsilon < r^{2} >] \\ \varepsilon &= (\frac{4}{E_{2}} + \frac{5}{E_{0}}) \frac{\hbar^{2}}{3mA} \\ Q_{\lambda\mu} &= \sum_{i} r_{i}^{\lambda} Y_{\lambda\mu}(\hat{r}_{i}) \\ \sum_{n} (E_{n} - E_{0}) B(E\lambda, 0 \to n) = S_{\lambda} = \frac{\hbar^{2}}{8\pi m} \lambda (2\lambda + 1)^{2} A < r^{2\lambda - 2} > \end{split}$$

Fiera di Primiero, Italy; 2-6 October 2017

18

ren

university of groningen

Isovector E1
operator
$$\mathcal{M}(E1) = \sum_{k=1}^{A} e\left(\frac{1}{2} - t_{zk}\right) \vec{r}_{k}^{int}$$

$$\vec{r}_{k} = \vec{R} + \vec{r}_{k}^{int} \quad where \ \vec{R} = \sum_{k} \vec{r}_{k}/A$$

$$\mathcal{M}(E1) = e\sum_{k=1}^{A} \left(\frac{1}{2} - t_{zk}\right) (\vec{r}_{k} - \vec{R})$$

$$\mathcal{M}(E1) = -e\sum_{k=1}^{A} t_{zk} (\vec{r}_{k} - \vec{R})$$

$$\mathcal{M}(E1) = e\sum_{k=1}^{A} \left(\frac{N-Z}{2A} - t_{zk}\right) \vec{r}_{k}$$

 \Rightarrow Effective charges for neutrons and protons

$$e_{D} = e\left(\frac{N-Z}{2A} - t_{zk}\right) = \begin{cases} \frac{N}{A}e & \text{for proton} \\ -\frac{Z}{A}e & \text{for neutron} \end{cases}$$

$$\sum_{n} (E_n - E_0) B(E\lambda, 0 \to n) = S_{\lambda} = \frac{\hbar^2}{8\pi m} \lambda (2\lambda + 1)^2 A \langle r^{2\lambda - 2} \rangle$$

For isovector *E1*, $\lambda=1$ and *A* becomes $Ze_{peff}^2 + Ne_{neff}^2$, which leads to:

$$\sum_{n} (E_n - E_0) B(E1, 0 \to n) = \frac{\hbar^2}{8\pi m} 9 \left[Z \left(\frac{N}{A} \right)^2 e^2 \right]$$

Fiera di Primiero, Italy; 2-6 October 2017

 university of groningen

Fiera di Primiero, Italy; 2-6 October 2017

university of groningen

Consider isovector electric dipole excitations.

How does a nucleus respond to an external perturbation, e.g., real photons?

\Rightarrow Photo-absorption cross section

 γ -rays from bremsstrahlung or positron capture in flight

Nuclear Collective response Giant Resonances

Isovector Electric Giant Resonances

Monopole (IVGMR)

Isovector

Photo-neutron cross sections

2-6 October

23

 university of groningen

Dipole (IVGDR)

Quadrupole (IVGQR)

Isovector Giant Dipole Resonances: Photo-neutron cross section

B. L. Berman and S. C. Fultz, Rev. Mod. Phys. 47 (1975) 713

university of

groningen

24

Measurement of the giant dipole resonance with mono-energetic photons B.L. Berman and S.C. Fultz Rev. Mod. Phys. 47 (1975) 713

Nucleus	Centroid	Width	
	(MeV)	(MeV)	
¹¹⁶ Sn	15.68	4.19	
¹¹⁷ Sn	15.66	5.02	
¹¹⁸ Sn	15.59	4.77	
¹¹⁹ Sn	15.53	4.81	
¹²⁰ Sn	15.40	4.89	
¹²⁴ Sn	15.19	4.81	

25

groni

Photo-neutron cross section in deformed nuclei:

Deformed Nucleus

$$R(\theta,\phi) = R_0(1 + \beta_2 Y_{20}(\theta,\phi))$$

 $\beta_2 (^{150}\text{Nd}) = 0.285(3)$

Excitation energies: $E_2/E_1 = 0.911\eta + 0.089$ Where $\eta = b/a$ $S_1/S_2 = 1/2$

B. L. Berman and S. C. Fultz, Rev. Mod. Phys. 47, 713 (1975)

26

university of

groningen

Experimental Tool: Electromagnetic excitation at high energies

Determination of 'photon energy' (excitation energy) via a kinematically complete measurement of the momenta of all outgoing particles (invariant mass)

Fiera di Primiero, Italy; 2-6 October 2017

27

university of

Experimental Scheme: The LAND reaction setup @GSI

Dipole Strength Distribution of n-Rich Nuclei

Fiera di Primiero, Italy; 2-6 October 2017

29

Dipole strength distributions in neutron-rich Sn isotopes

Electromagnetic-excitation cross section

Photo-neutron cross section

Fiera di Primiero, Italy; 2-6 October 2017

30

Dipole strength distributions in ⁶⁸Ni

Simultaneous fit of spectra with 8 individual energy bins as free fit parameters: "deconvolution"

Fiera di Primiero, Italy; 2-6 October 2017

university of

groningen

31

Distribution of isovector dipole strength for the three closed-(sub)shell nickel isotopes ⁵⁶Ni, ⁶⁸Ni, and ⁷⁸Ni calculated in **HF-plus-RPA** using the **FSUGold interaction** parameter set.

Fiera di Primiero, Italy; 2-6 October 2017

Experiments at RCNP, Osaka University

- ➤ (p,p') reaction at 295 MeV
 - High-resolution spectrometer "Grand Raiden"

Fiera di Primiero, Italy; 2-6 October 2017

university of groningen

A. Tamii et al., Phys. Rev. Lett. 107 (2011) 062502

Fiera di Primiero, Italy; 2-6 October 2017

university of

iniversity of groningen
0°-1.8° inelastic proton scattering spectrum shows in addition to IVGDR low-lying E1 and M1 structures.

Peaks with (*) have been selected for multipoledecomposition analysis.

3.75°-5.25° inelastic proton scattering spectrum is almost structure-less.

C. Iwamoto et al., Phys. Rev. Lett. 108 (2012) 262501

37

university of

groningen

E1 (dash-dotted line)

M1 (solid line)

E2 (dashed line)

C. Iwamoto et al., Phys. Rev. Lett. 108 (2012) 262501

Fiera di Primiero, Italy; 2-6 October 2017

38

university of

groningen

Histograms MDA of 100 keV bins and red circles with errors are of selected peaks.

C. Iwamoto et al., Phys. Rev. Lett. 108 (2012) 262501

Decay of IVGDR built on excited states

Left: Statistical decay of IVGDR in ¹⁵⁶Dy selected on different angular momentum bins. Curves fits CASCADE calculations with dashed curve increased by 5%. Right: Same as left linearized by multiplying with $e^{E\gamma/Teff}$

A. Stolk et al., Phys. Rev. C40 (1989) R2454

41

university of

groningen

Role of isospin in the statistical decay of the IVGDR built on excited states

Clebsch-Gordon coefficient for isospin coupling <0010|00>=0

Dotted: pure ISGQR Dashed: pure isospin Dash-dotted: complete isospin mixing Solid: isospin mixing (~ 5%)

M.N. Harakeh et al., Phys. Lett. B176 (1986) 297

Fiera di Primiero, Italy; 2-6 October 2017

42

university of

groningen

Fiera di Primiero, Italy; 2-6 October 2017

43

/ university of
groningen

Fiera di Primiero, Italy; 2-6 October 2017

44

Compression Modes ISGMR & ISGDR

Fiera di Primiero, Italy; 2-6 October 2017

/ university of groningen

Fiera di Primiero, Italy; 2-6 October 2017

46

X /

university of groningen

In fluid mechanics, **compressibility** is a measure of the relative volume change of a fluid as a response to a pressure change.

 $\beta = -\frac{1}{V} \frac{\partial V}{\partial P}$

where *P* is pressure, *V* is volume.

Incompressibility or bulk modulus (*K***) is a measure of a substance's resistance to uniform compression and can be formally defined:**

 $K = -V \frac{\partial P}{\partial V}$

For the equation of state of symmetric nuclear matter at saturation nuclear density:

$$\left[\frac{d(E/A)}{d\rho}\right]_{\rho=\rho_0} = 0$$

and one can derive the incompressibility⁰ of nuclear matter: -20

0

$$K_{nm} = \left[9\rho^2 \frac{d^2(E/A)}{d\rho^2}\right]_{\rho = \rho}$$

E/A: binding energy per nucleon

ρ : nuclear density

J.P. Blaizot, Phys. Rep. 64 (1980) 171

 ρ_0 : nuclear density at saturation

120 HARD 100 SOFT 80 E/A (MeV/nucleon) 60 40 20 -20 0.1 0.3 0.4 0.5 0.2 0.6 $(1/fm^{3})$ Q

Equation of state (EOS) of nuclear matter

More complex than for infinite neutral liquids Neutrons and protons with different interactions Coulomb interaction of protons

- 1. Governs the collapse and explosion of giant stars (supernovae)
- 2. Governs formation of neutron stars (mass, radius, crust)
- **3.** Governs collisions of heavy ions.
- 4. Important ingredient in the study of nuclear properties.

Isoscalar Excitation Modes of Nuclei

Hydrodynamic models/Giant Resonances Coherent vibrations of nucleonic fluids in a nucleus.

Compression modes: ISGMR, ISGDR

In Constrained and Scaling Models:

$$E_{ISGMR} = \hbar \sqrt{\frac{K_A}{m \langle r^2 \rangle}}$$

$$E_{ISGDR} = \hbar \sqrt{\frac{7}{3} \frac{K_A + \frac{27}{25} \varepsilon_F}{m \langle r^2 \rangle}}$$

 ε_F is the Fermi energy and the nucleus incompressibility:

$$K_A = [r^2 (d^2 (E/A)/dr^2)]_{r=R_0}$$

J.P. Blaizot, Phys. Rep. 64 (1980) 171

50

university of

groningen

Giant resonances

- Macroscopic properties: E_x , Γ , %EWSR
- Isoscalar giant resonances; compression modes

ISGMR, ISGDR ⇒ Incompressibility, symmetry energy

$$K_{A} = K_{vol} + K_{surf}A^{-1/3} + K_{sym}((N-Z)/A)^{2} + K_{Coul}Z^{2}A^{-4/3}$$

Fiera di Primiero, Italy; 2-6 October 2017

51

Fiera di Primiero, Italy; 2-6 October 2017

y university of groningen

Nucleus, e.g., ²⁰⁸Pb

Inelastic *α* **scattering**

Fiera di Primiero, Italy; 2-6 October 2017

/ university of groningen

ISGQR, ISGMR

$$\Leftarrow$$
²⁰⁸Pb(α,α') at E_α=120 MeV

Large instrumental background and nuclear continuum!

M. N. Harakeh et al., Phys. Rev. Lett. 38 (1977) 676

54

university of

groningen

BBS@KVI

(p,p') at $E_p \sim 300$ (α,α') at $E_{\alpha} \sim 400$ & 200 MeV at RCNP & KVI, respectively

RCNP

Fiera di Primiero, Italy; 2-6 October 2017

56

university of groningen

Si-ball 16 Si-detectors at 10 cm from the target total solid angle: 1 sr

Å

university of

groningen

58

total solid angle: 0.37 sr

KVI Big-Bite Spectrometer (BBS)

ISGQR at 10.9 MeV

ISGMR at 13.9 MeV

Fiera di Primiero, Italy; 2-6 October 2017

VI

Multipole decomposition analysis (MDA)

$$\left(\frac{d^2\sigma}{d\Omega dE}(\vartheta_{c.m.}, E)\right)^{\exp.} = \sum_{L} a_L(E) \left(\frac{d^2\sigma}{d\Omega dE}(\vartheta_{c.m.}, E)\right)_{L}^{calc.}$$

$$\left(\frac{d^2\sigma}{d\Omega dE}(\theta_{c.m.},E)\right)^{\exp}$$

: Experimental cross section

 $\left(\frac{d^2\sigma}{d\Omega dE}(\vartheta_{c.m.}, E)\right)_{I}^{calc.}$: DWBA cross section (unit cross section)

 $a_{I}(E)$: EWSR fraction

- **ISGR** (L<15)+ **IVGDR** (through Coulomb excitation) **a**.
- **b.** DWBA formalism; single folding \Rightarrow transition potential

$$\delta U_{L}(r,E) = \int d\vec{r}' \,\delta \rho_{L}(\vec{r}',E) [V(|\vec{r}-\vec{r}'|,\rho_{0}(r')) + \rho_{0}(r')\frac{\partial V(|\vec{r}-\vec{r}'|,\rho(r'))}{\partial \rho_{0}(r')}]$$

$$U(r) = \int \vec{dr'} V(|\vec{r} - \vec{r'}|, \rho_0(r'))\rho_0(r')$$

Transition density

ISGMR Satchler, Nucl. Phys. A472 (1987) 215

$$\delta \rho_0(r, E) = -\alpha_0 [3 + r\frac{d}{dr}]\rho_0(r)$$
$$\alpha_0^2 = \frac{2\pi\hbar^2}{mA < r^2 > E}$$

ISGDR Harakeh & Dieperink, Phys. Rev. C23 (1981) 2329

$$\begin{split} &\delta\!\rho_1(r,E) = -\frac{\beta_1}{R\sqrt{3}} [3r^2 \frac{d}{dr} + 10r - \frac{5}{3} < r^2 > \frac{d}{dr} + \varepsilon(r\frac{d^2}{dr^2} + 4\frac{d}{dr})]\rho_0(r) \\ &\beta_1^2 = \frac{6\pi\hbar^2}{mAE} \frac{R^2}{(11 < r^4 > -(25/3) < r^2 >^2 - 10\varepsilon < r^2 >)} \end{split}$$

Other modes Bohr-Mottelson (BM) model

$$\delta \rho_L(r, E) = -\delta_L \frac{d}{dr} \rho_0(r)$$

$$\delta_L^2 = (\beta_L c)^2 = \frac{L(2L+1)^2}{(L+2)^2} \frac{2\pi\hbar^2}{mAE} \frac{\langle r^{2L-2} \rangle}{\langle r^{L-1} \rangle^2}$$

Fiera di Primiero, Italy; 2-6 October 2017

 university of groningen

Uchida et al., Phys. Lett. B557 (2003) 12 Phys. Rev. C69 (2004) 051301

 (α, α') spectra at 386 MeV

10 ³ (a)

10

10

10

10 (b) $E_{\rm v} = 14.5 \, {\rm MeV}$

10

65

E_x= 24.5 MeV

θ_{c.m.} (deg.)

¹¹⁶Sn

university of

groningen

d²d/dΩdE (mb/sr MeV)

In HF+RPA calculations,

$$K_{nm} = \left[9\rho^2 \frac{d^2(E/A)}{d\rho^2}\right]_{\rho = \rho_0}$$

Nuclear matter

 K_A : incompressibility

67

university of

groningen

E/A: binding energy per nucleon

- **ρ** : nuclear density
- ρ_0 : nuclear density at saturation

From GMR data on ²⁰⁸Pb and ⁹⁰Zr,

$K_{\infty} = 240 \pm 10 \text{ MeV}$

[See, e.g., G. Colò et al., Phys. Rev. C 70 (2004) 024307]

This number is consistent with both ISGMR and ISGDR Data and with non-relativistic and relativistic calculations

Fiera di Primiero, Italy; 2-6 October 2017

university groningen

Isoscalar GMR strength distribution in Sn-isotopes obtained by Multipole Decomposition Analysis of singles spectra obtained in ^ASn(α,α') measurements at incident energy 400 MeV and angles from 0° to 9°

$$K_A \sim K_{vol} (1 + cA^{-1/3}) + K_{\tau} ((N - Z)/A)^2 + K_{Coul} Z^2 A^{-4/3}$$
$$K_A - K_{Coul} Z^2 A^{-4/3} \sim K_{vol} (1 + cA^{-1/3}) + K_{\tau} ((N - Z)/A)^2$$

~ Constant + $K_{\tau}((N - Z)/A)^2$

We use $K_{Coul} = -5.2$ MeV (from Sagawa) (N - Z)/A $^{112}Sn - ^{124}Sn: 0.107 - 0.194$

Fiera di Primiero, Italy; 2-6 October 2017

university of

groningen

Sn isotopes $\Rightarrow K_{\tau} = -550 \pm 100 \text{ MeV}$

Fiera di Primiero, Italy; 2-6 October 2017

71

university of groningen

Monopole strength Distribution

Fiera di Primiero, Italy; 2-6 October 2017

73

university of groningen

Data from H. Sagawa et al., Phys. Rev. C 76 (2007) 034327

Fiera di Primiero, Italy; 2-6 October 2017

university of

VI

Fiera di Primiero, Italy; 2-6 October 2017

75

Colò *et al.*: Non-relativistic RPA (without pairing) reproduces ISGMR in ²⁰⁸Pb and ⁹⁰Zr.

Piekarewicz: Relativistic RPA (FSUGold model) reproduces g.s. observables and ISGMR in ²⁰⁸Pb, ¹⁴⁴Sm and ⁹⁰Zr [$K_{\infty} = 230$ MeV]

Vretenar: Relativistic mean field (DD-ME2: densitydependent mean-field effective interaction).

[$K_{\infty} = 240$ MeV]. Possibly agreement is fortuitous since strength distributions are not much different from those by Colò *et al.* and Piekarewicz.

Tselyaev *et al.*: Quasi-particle time-blocking approximation (QTBA) (T5 Skyrme interaction) $[K_{\infty} = 202 \text{ MeV}?!]$

Softness of Sn-nuclei is still unresolved

Fiera di Primiero, Italy; 2-6 October 2017

Fiera di Primiero, Italy; 2-6 October 2017

university of

groningen

77

Splitting of the ISGMR under deformation

K projection of *J* on symmetry axis is good quantum number in deformed nuclei Coupling of ISGMR with *K*=0 component of ISGQR

Isoscalar Giant Resonances in Nd isotopes: QRPA calculations

K. Yoshida and T. Nakatsukasa, Phys. Rev. C 88 (2013) 034309

Fiera di Primiero, Italy; 2-6 October 2017

79

/ university of groningen

Effect of deformation on Isoscalar Giant Resonances: Sm isotopes

Fiera di Primiero, Italy; 2-6 October 2017

80

university of

Decay of Giant Resonances

Fiera di Primiero, Italy; 2-6 October 2017

/ university of
 groningen

Decay of giant resonances

- Width of resonance
 - $\Gamma, \Gamma^{\uparrow}, \ \Gamma^{\downarrow} \ (\Gamma^{\downarrow\uparrow}, \Gamma^{\downarrow\downarrow})$
 - Γ[†]: direct or escape width
 - Γ¹: spreading width
 - $\Gamma^{\downarrow\uparrow}$: pre-equilibrium, $\Gamma^{\downarrow\downarrow}$: compound
- Decay measurements
 - \Rightarrow Direct reflection of damping processes

Allows detailed comparison with theoretical calculations

Excitation of ISGDR in ²⁰⁸Pb

- In ²⁰⁸Pb located around 22 MeV and width of 4 MeV
- L=1 angular distribution peaks close to a scattering angle of 3°
- Difficult to identify in nuclear continuum and rides on instrumental background

Singles ²⁰⁸Pb(α,α') At E_{α} = 200 MeV

83

university of

groningen

Microscopic structure of ISGDR

Transition operator

Spurious centerOvertoneof mass motion

 $3\hbar\omega$ excitation (overtone of c.o.m. motion)

Fiera di Primiero, Italy; 2-6 October 2017

 university of groningen

Fiera di Primiero, Italy; 2-6 October 2017

85

/ university of groningen

Si-ball 16 Si-detectors at 10 cm from the target total solid angle: 1 sr

Å

university of

groningen

86

total solid angle: 0.37 sr

KVI Big-Bite Spectrometer (BBS)

Proton-decay detection

α-*p* separation using rise time of signal Si(Li)

87

university of

groningen

Neutron-decay detection

²⁰⁸Pb($\alpha,\alpha' p \text{ or } n$)

Fiera di Primiero, Italy; 2-6 October 2017

89

university of

²⁰⁸Pb(α,α') followed by *p* decay

30 208 Pb($\alpha, \alpha p$)² 25 E_=200 MeV **Decay to hole** .5°<Θ, <6.0° states in ²⁰⁷Tl; 20 branching ratios ө W) 15 Ш ²⁰⁷TI (E,=0, 0.35 MeV predicted by ²⁰⁷TI (E. =1, **3**5, 1,68 M Gorelik et al. 10 =0.MeV5 M. Hunyadi et al., Phys. Lett. B576 (2003) 253 ISCOR M. Hunyadi et al., Phys. Rev. C75 (2007) 014606 0 30 10 15 20 25 35 5 E, in ²⁰⁸Pb (MeV)

Fiera di Primiero, Italy; 2-6 October 2017

university of

groningen

90

Branching ratios for decay

Fiera di Primiero, Italy; 2-6 October 2017

91 🏅

university of

ISGDR in ²⁰⁸Pb in *p* decay

Fiera di Primiero, Italy; 2-6 October 2017

92

Branching ratios for decay

This work M.L. Gorelik *et al.*, PRC 62 (2000) 047301; Continuum RPA; Landau-Migdal Parameters: f^{ex}, f' ; Smearing parameter Δ energy-dependent

Fiera di Primiero, Italy; 2-6 October 2017

university of

Overtone of the ISGQR? $[r^4Y_2]$

²⁰⁸Pb(α,α') followed by *n* decay

Fiera di Primiero, Italy; 2-6 October 2017

university of groningen

Fiera di Primiero, Italy; 2-6 October 2017

y university of groningen

Branching ratios for the direct neutron-decay channel

From the simplified MDA of angular distributions

97

groningen

Final-state spectra in ²⁰⁷Pb obtained from neutron decay of

(a) continuum underlying ISGMR in ²⁰⁸Pb and
(b and c) ISGMR proper.
(b) Fit with 100% statistical
(c) Fit with 60% statistical

I_{j}	E_x (MeV)	Γ¦ (keV), expt.	Γ_i^{\dagger} (keV), theory
<i>p</i> 1/2	0	140 ± 35	5
$l_{13/2}$	1.630	140 ± 55	6
$f_{5/2}$	0.570	70 ± 15	92
$p_{3/2}$	0.890	50 ± 10	8
$f_{1/2}$	2.340	165 ± 40	174

S. Brandenburg et al., Nucl. Phys. A466 (1987) 29

98

university of

groningen

Data analysis: Proton decay

Experimental results

M. Hunyadi et al., Phys. Rev. C 80 (2009) 044317

Experimental results

Strength distribution of ISGDR in ⁵⁸Ni

Spectra of L = 1 strengths obtained with DOS method in percentage of isoscalar EWSR; a) coincidence data gated on g.s. decay and b) singles data.

Differential cross section of resonance structure fitted with L = 1and L = 3 DWBA calculations.

Proton-decay branching ratios Normalized to 100%

		Exp. (%)	Cal. (%)
		(24-38 MeV)	(15-40 MeV)
	7/2-	61.3 (with 5/2 ⁻)	47
	3/2-	7.9	3.1
	3/2 ⁻ , 1/2 ⁻	9.9	2.2 (only for 1/2-)
	5/2-	3.2±3.4	-
	$1/2^{+}$	2.0±4.2	13.4
	3/2+, 5/2+	15.9	34.3
Σ		100 %	100%

Calculations: M.L. Goerlik, I.V. Safonov, and M.H. Urin, Phys. Rev. C69 (2004) 054322

Conclusions!

- There has been much progress in understanding ISGMR & ISGDR macroscopic properties
 - Systematics: E_x , Γ , %EWSR
 - $\Rightarrow K_{\rm nm} \approx 240 {
 m MeV}$
 - $\Rightarrow K_{\tau} \approx -500 \text{ MeV}$
- Sn nuclei are softer than ²⁰⁸Pb and ⁹⁰Zr.
- Recently, Microscopic Structure for a few nuclei CRPA has some success in ²⁰⁸Pb & ⁵⁸Ni but fails badly in ¹¹⁶Sn & ⁹⁰Zr.
- Possible observation quadrupole compression mode, i.e. overtone of ISGQR

Gamma-Decay Neutron-Skin Thickness Pygmy Dipole Resonance

Setup at KVI

D. Savran et al., Nucl. Inst. and Meth. Phys. Res. A 564 (2006) 267

Fiera di Primiero, Italy; 2-6 October 2017

university of

ISGQR at 10.8 MeV ISGMR at 13.8 MeV

Hatched area ⇒ IVGDR contribution (Coulomb + nuclear)

Fiera di Primiero, Italy; 2-6 October 2017

108

S_{KVI}

Fiera di Primiero, Italy; 2-6 October 2017

109

55.5

university of

Isoscalar transition density in the Goldhaber-Teller model for excitation of IVGDR in inelastic α -scattering.

$$g_1^{10}(r) = g_1^{n}(r) - g_1^{p}(r) = \alpha_1 \gamma \left(\frac{N-Z}{A}\right) \left(\frac{d\rho(r)}{dr} + \frac{1}{3}c\frac{d^2\rho(r)}{dr^2}\right).$$

$$\frac{\Delta R_{\rm PN}}{R_0} = \frac{R_{\rm n} - R_{\rm p}}{\frac{1}{2}(R_{\rm n} + R_{\rm p})} = \gamma \frac{2(N - Z)}{3A}.$$

Here, γ is related to the proton and neutron central density distributions and thus to ΔR_{pn} . α_1 is deformation length obtained from TRK sum rule. Therefore, DWBA cross sections can be calculated as function of $\Delta R_{pn}/R_0$ for the Goldhaber-Teller model and similarly for the Steinwedel-Jensen model.

γ-decay branching ratios are known from photo-absorption experiments.

Fiera di Primiero, Italy; 2-6 October 2017

university of

Full line is the calculated $\alpha \gamma_0$ coincidence cross section, averaged over the solid angle of the α -particle and integrated over the full γ -ray solid angle (4π) and over the ΔE energy range as function of $\Delta R_{pn}/R$. The experimental $\alpha \gamma_0$ cross sections for the IVGDR are shown as full circles with vertical error bars. The deduced values for $\Delta R_{pn}/R$ with the associated uncertainty (full circles with horizontal error bars) are also indicated.

Isotope	Present work $\Delta R_{\rm PN}/R_0$ (%)	Present work $\Delta R_{\rm PN}$ (fm)	Batty et al. [2] $\Delta R_{\rm PN}$ (fm)	Angeli et al. [6] ⊿R _{PN} (fm)
¹¹⁶ Sn	0.5 ± 2.7	0.02 ± 0.12	0.15 ± 0.05	0.13
¹²⁴ Sn	4.4 ± 2.4	0.21 ± 0.11	0.25 ± 0.05	0.22
²⁰⁸ Pb	$3.5^{+1.5}_{-1.6}$	0.19 ± 0.09	0.14 ± 0.04	0.22

Fiera di Primiero, Italy; 2-6 October 2017

111

¹⁴⁰Ce($\alpha, \alpha' \gamma$) - coincidence matrix

¹⁴⁰Ce($\alpha,\alpha'\gamma$) vs. ¹⁴⁰Ce(γ,γ')

D. Savran et al., Phys. Rev. Lett. 97 (2006) 172502

Fiera di Primiero, Italy; 2-6 October 2017

113

university of

Multipole assignment with α - γ angular correlation

Multipole assignment with α - γ angular correlation

Comparison of $(\alpha, \alpha' \gamma)$ with (γ, γ') on ¹³⁸Ba

E1 strength distribution in ¹⁴⁰Ce, ¹³⁸Ba, ¹²⁴Sn, and ⁹⁴Mo

Nantes; 19-20 January 2015

Fiera di Primiero, Italy; 2-6 October 2017

118

Identification of PDR structure in $(\alpha, \alpha' \gamma)$

15

E. Lanza et al., PRC 89 (2014) 041601(R)

- Good reproduction of experimental results using RQTBA transition densities + semi-classical reaction model
- ⇒ Different response to complementary probes allows identification of PDR structure

- The grey histogram corresponds to the total unresolved strength.
- Top panel: Discrete level in α scattering
- Centre panel: Discrete levels in ¹⁷O scattering
- **Bottom panel: photon scattering**
- L. Pellegri et al., Phys. Lett. B738 (2014) 519

120

groningen

Fiera di Primiero, Italy; 2-6 October 2017

Future Prospects

Fiera di Primiero, Italy; 2-6 October 2017

university of groningen

Outlook

Radioactive ion beams will be available at energies where it will be possible to study excitation of ISGMR and ISGDR RIKEN, FAIR, SPIRAL2, NSCL, EURISOL

Determine ISGMR and ISGDR in unstable Sn nuclei. A = 106 to 134 possible

 \Rightarrow A more precise determination of K_{τ}

Fiera di Primiero, Italy; 2-6 October 2017

Nuclear structure studies with reactions in inverse kinematics - Possible at GSI/FAIR, RIKEN, GANIL (beam energies of 50-100 MeV/u are needed!)

Fiera di Primiero, Italy; 2-6 October 2017

123

Fiera di Primiero, Italy; 2-6 October 2017

Nuclear structure studies with reactions in inverse kinematics Challenges with exotic beams

• Inverse kinematics

- Intensity of exotic beams is very low ($\sim 10^4 10^5$ pps)
- To get reasonable yields thick target is needed
- Very low energy (~ sub MeV) recoil particle will not come out of the thick target

Active target

A gas detector where the target gas also acts as a detector

- Good angular coverage
- Effective target thickness can be increased without much loss of resolution
- > Detection of very low energy recoil particle is possible

MAYA active-target detector at GANIL

Fiera di Primiero, Italy; 2-6 October 2017

Schematic view of MAYA active target detector

Fiera di Primiero, Italy; 2-6 October 2017

university of

GSI Storage Ring

Experimental Storage Ring

Luminosity: 10²⁶ – 10²⁷ cm⁻²s⁻¹

EPJ Web Conf. 66, 03093 (2014)

128

university of

groningen

Fiera di Primiero, Italy; 2-6 October 2017

Advantages and disadvantages of storage-ring experiments

Advantages: Large intensities in the ring Little energy loss in the target No target window (no background) High resolution of the beam (cooling) Forward focusing for high-energy particles Low-energy threshold

Disadvantages: Ultra high vacuum Very small recoil energies for low q Thin targets

Detection system @ FAIR

Figure 1: Schematic view of the EXL detection systems. Left: Set-up built into the NESR storage ring. Right: Target-recoil detector surrounding the gas-jet target.

Use of EXL recoil detector has been under evaluation

Fiera di Primiero, Italy; 2-6 October 2017

university of groningen

Thank you for your attention

Fiera di Primiero, Italy; 2-6 October 2017

/ university of groninger