Excitation of Nucleon Resonances in Isobaric Charge Exchange Reactions

Isaac Vidaña, ÍNFN Catania

First observation of the $\Delta(1232) \&$ the Roper $\mathrm{N}^{*}(1440)$

« In 1952 Fermi et al., observed the $\Delta(1232)$ for the first time in πp scattering

Phys. Rev. 85, 932 (1952)

\diamond In 1963 L. David Roper found an unexpected P_{11} resonance at E ~ 1.44 GeV

Phys. Rev. Lett. 12, 340 (1964)

Since them many nucleon resonances have been discovered in
$>\pi \mathrm{N}$ elastic scattering
$>\pi \mathrm{N} \longrightarrow \eta \mathrm{N}, \sigma \mathrm{N}, \omega \mathrm{N}, \Lambda \mathrm{K}, \Sigma \mathrm{K}$, $\rho \mathrm{N}, \pi \Delta$ reactions
> Electroproduction $\gamma \mathrm{N}$
> More complex processes like e.g., $\pi \mathrm{N} \longrightarrow \pi \pi \mathrm{N}, \pi \rho \mathrm{N}, \omega \mathrm{N}$, $\phi \mathrm{N}, \mathrm{K}^{*} \mathrm{Y}, \ldots$

2015 status of the $\Delta \& N$ resonances

22Δ resonances known with masses from 1232 to 2950 MeV

Particle J^{P}	Status			Status as seen in -						
				$N \eta$	$N \sigma$					$\Delta \pi$
Δ (1232) $3 / 2^{+}$	****	****	****	F						
$\Delta(1600) 3 / 2^{+}$	***	***	***	o					*	***
$\Delta(1620) 1 / 2^{-}$	****	****	***		r				***	***
$\Delta(1700) 3 / 2^{-}$	****	****	****		b				**	***
$\Delta(1750) 1 / 2^{+}$	*	*			i					
$\Delta(1900) 1 / 2^{-}$	**	**	**			d		**	**	**
$\Delta(1905) 5 / 2^{+}$	****	***	****			d		***	**	**
$\Delta(1910) 1 / 2^{+}$	****	****	**			e		*	*	**
$\Delta(1920) 3 / 2^{+}$	***	**	**				n	***		**
$\Delta(1930) 5 / 2^{-}$	*	**								
$\Delta(1940) 3 / 2^{-}$	**	*	**	F				(seen		$\Delta \eta)$
$\Delta(1950) 7 / 2^{+}$	****	****	****	-				***	*	***
$\Delta(2000) 5 / 2^{+}$	**				r					**
$\Delta(2150) 1 / 2^{-}$	*	*			b					
$\Delta(2200) 7 / 2^{-}$	*	*			i					
$\Delta(2300) 9 / 2^{+}$	**	**				d				
$\Delta(2350) 5 / 2^{-}$	*	*				d				
$\Delta(2390) 7 / 2^{+}$	*	*				e				
$\Delta(2400) 9 / 2^{-}$	**	**					n			
$\Delta(2420) 11 / 2^{+}$	****	****	*							
$\Delta(2750) 13 / 2^{-}$	**	**								
$\Delta(2950) 15 / 2^{+}$	**	**								

*** Existence is certain, and properties are at least fairly well explored. *** Existence is very likely but further confirmation of quantum numbers and branching fractions is required.
** Evidence of existence is only fair.

* Evidence of existence is poor.

26 N resonances known with masses from 1440 to 2700 MeV

Particle J^{P}	Status			Status as seen in -						
	overall	$1 \pi N$	γN	$N \eta$	$N \sigma$	$N \omega$	ΛK	ΣK	$N \rho$	$\Delta \pi$
$N \quad 1 / 2^{+}$	****									
$N(1440) 1 / 2^{+}$	****	****	****		***				*	***
$N(1520) 3 / 2^{-}$	****	****	****	***					***	***
$N(1535) 1 / 2^{-}$	****	****	****	****					**	*
$N(1650) 1 / 2^{-}$	****	****	***	***			***	**	**	***
$N(1675) 5 / 2^{-}$	****	****	***	*			*		*	***
$N(1680) 5 / 2^{+}$	****	****	****	*	**				***	***
$N(1685)$??	*									
$N(1700) 3 / 2^{-}$	***	***	**	*			*	*	*	***
$N(1710) 1 / 2^{+}$	***	***	***	***		**	***	**	*	**
$N(1720) 3 / 2^{+}$	****	****	***	***			**	**	**	*
$N(1860) 5 / 2^{+}$	**	**							*	*
$N(1875) 3 / 2^{-}$	***	*	***			**	***	**		***
$N(1880) 1 / 2^{+}$	**	*	*		**		*			
$N(1895) 1 / 2^{-}$	**	*	**	**			**	*		
$N(1900) 3 / 2^{+}$	***	**	***	**		**	***	**	*	**
$N(1990) 7 / 2^{+}$	**	**	**					*		
$N(2000) 5 / 2^{+}$	**	*	**	**			**	*	**	
$N(2040) 3 / 2^{+}$	*									
$N(2060) 5 / 2^{-}$	**	**	**	*				**		
$N(2100) 1 / 2^{+}$	*									
$N(2150) 3 / 2^{-}$	**	**	**				**			**
$N(2190) 7 / 2^{-}$	****	****	***			*	**		*	
$N(2220) 9 / 2^{+}$	****	****								
$N(2250) 9 / 2^{-}$	****	****								
$N(2600) 11 / 2^{-}$	***	***								
$N(2700) 13 / 2^{+}$	**	**								

The $\Delta(1232)$

First spin-isospin excited mode of the nucleon corresponding to $\Delta \mathrm{S}=1$ \& $\Delta T=1$. Conventionally described as a resonant $\pi \mathrm{N}$ state with relative angular momentum $\mathrm{L}=1$

$\sigma \tau \quad$ simultaneous flip of the spin \& isospin of a quark in the
 nucleon

Breit-Wigner mass (mixed charges) $=1230$ to $1234(\approx 1232)$ MeV
Breit-Wigner full width (mixed charges) $=114$ to $120(\approx 117)$
MeV
$\operatorname{Re}($ pole position $)=1209$ to $1211(\approx 1210) \mathrm{MeV}$
$-21 \mathrm{~m}($ pole position $)=98$ to $102(\approx 100) \mathrm{MeV}$

$\boldsymbol{\Delta}(\mathbf{1 2 3 2})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \pi$	100%	229
$N \gamma$	$0.55-0.65 \%$	259
$N \gamma$, helicity=1/2	$0.11-0.13 \%$	259
$N \gamma$, helicity $=3 / 2$	$0.44-0.52 \%$	259

PDG estimates (2015)

The $N^{*}(1440)$

PDG estimates (2015)
$N(1440) \mathbf{1 / 2 +} \quad I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}+\right)$
Breit-Wigner mass $=1410$ to $1450(\approx 1430) \mathrm{MeV}$ Breit-Wigner full width $=250$ to $450(\approx 350) \mathrm{MeV}$
$\operatorname{Re}($ pole position $)=1350$ to $1380(\approx 1365) \mathrm{MeV}$
$-21 \mathrm{~m}($ pole position $)=160$ to $220(\approx 190) \mathrm{MeV}$

$\boldsymbol{N}(\mathbf{1 4 4 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$\rho(\mathrm{MeV} / \mathrm{c})$
$N \pi$	$55-75 \%$	391
$N \eta$	$(0.0 \pm 1.0) \%$	\dagger
$N \pi \pi$	$30-40 \%$	338
$\Delta \pi$	$20-30 \%$	135
$\quad \Delta(1232) \pi, P$-wave	$15-30 \%$	135
$N \rho$	$<8 \%$	\dagger
$\quad N \rho, S=1 / 2, P$-wave	$(0.0 \pm 1.0) \%$	\dagger
$N(\pi \pi)_{S=0}^{l=0}$	$10-20 \%$	-
$p \gamma$	$0.035-0.048 \%$	407
$\quad p \gamma$, helicity=1/2	$0.035-0.048 \%$	407
$n \gamma$	$0.02-0.04 \%$	406
$n \gamma$, helicity=1/2	$0.02-0.04 \%$	406

However ... its nature is not completely understood

Theoretical descriptions include:
\diamond Pure Quark Model: radial excitation of the nucleon (qqq)*
\triangleleft Hybrid model: $N^{*}(1440)$ as a qqqG state
\diamond Dual nature of $\mathrm{N}^{*}(1440)$ as a qqq \& qqqqq̄̄ states
$\diamond \quad \mathrm{N}^{*}(1440)$ as a collective excitation
\triangleleft Coupled-channel $(\pi N, \sigma N, \pi \Delta, \rho N)$ meson exchange description of the $\mathrm{N}^{*}(1440)$ structure. No qqq component at all.
$\diamond \quad$ Lattice QCD

Is the study of nucleon resonances still interesting?

After more than 60 years studying nucleon resonances one could think that not, but \ldots determining in-medium (density \& isospin dependence) properties of nucleon resonances is essential for a better understanding of ...
\diamond the underlying dynamics governing many nuclear reactions
\diamond not yet solved quenching problem of the GT strength
\diamond three-nucleon force mechanisms
\diamond EoS of asymmetric nuclear matter (neutron stars)
\diamond their effect on relativistic heavy ion collisions
> ...

Isobar Charge Exchange Reactions

 excitations in nuclei
\checkmark Low energies: GT, spin-dipole, spinquadrupole, quasi-elastic
\checkmark High energies: excitation of a nucleon into $\Delta, \mathrm{N}^{*}, \ldots$

- Being peripheral can provide information on

Energy Loss

Are important tools to study the spin-isospin dependence of the nuclear force

Past Observations of the $\Delta(1232)$ in Isobar Charge Exchange Reactions

1980's complete experimental program to measure $\Delta(1232)$ excitation in isobar charge exchange reactions with light \& medium mass projectiles at SATURNE accelerator in Saclay
(p, n) reactions $\quad(\mathrm{n}, \mathrm{p})$ reactions

Shift of the Δ peak to lower energies for medium \& heavy targets

What's its origin?

D. Bachelier, et al., PLB 172, 23(1986)

Recent Experiments

Recent experiments have been performed with the FRS at GSI using stable $\left({ }^{112} \mathrm{Sn},{ }^{124} \mathrm{Sn}\right) \&$ unstable $\left({ }^{110} \mathrm{Sn},{ }^{120} \mathrm{Sn},{ }^{122} \mathrm{Sn}\right)$ tin projectiles on different targets

The use of relativistic nuclei far off stability allows to explore the isospin degree of freedom enlarging our present knowledge of the properties of isospinrich nuclear systems

Figure courtesy of J. Benlliure \& J. W. Vargas
Qualitative agreement with the results of SATURNE

Model for the reaction

$$
{ }^{A}(Z \pm 1)
$$

Glauber like model where only the nucleons in the overlap region participate on the reaction \& the rest are simply spectators

Differential cross section calculated as

$$
\frac{d \sigma}{d E}=(\text { Elem. proc. cross sec. }) \times(\text { Av. numb. of participants }) \times(\text { Nuclear Response })
$$

Elementary Processes

Model includes Direct + Exchange contributions from \diamond Elastic $\mathrm{NN} \longrightarrow \mathrm{NN}$ processes

\diamond Inelastic $\mathrm{NN} \longrightarrow \mathrm{NN} \pi$ processes

Elementary processes contributing to (${ }^{\mathrm{A}} \mathrm{Z},{ }^{\mathrm{A}}(\mathrm{Z}-1)$)

\diamond Elastic $\mathrm{N}_{2}\left(\mathrm{~N}_{1}, \mathrm{~N}_{3}\right) \mathrm{N}_{4}$ process
 \diamond Inelastic $\mathrm{N}_{2}\left(\mathrm{~N}_{1}, \mathrm{~N}_{3}\right) \mathrm{N}_{4} \pi \& \mathrm{~N}_{2}\left(\mathrm{~N}_{1}, \mathrm{~N}_{3} \pi\right) \mathrm{N}_{4}$ processes

Elementary processes contributing to ($\left.{ }^{\mathrm{A}} \mathrm{Z},{ }^{\mathrm{A}}(\mathrm{Z}+1)\right)$

\diamond Elastic $\mathrm{N}_{2}\left(\mathrm{~N}_{1}, \mathrm{~N}_{3}\right) \mathrm{N}_{4}$ process

\diamond Inelastic $\mathrm{N}_{2}\left(\mathrm{~N}_{1}, \mathrm{~N}_{3}\right) \mathrm{N}_{4} \pi \& \mathrm{~N}_{2}\left(\mathrm{~N}_{1}, \mathrm{~N}_{3} \pi\right) \mathrm{N}_{4}$ processes

Average Number of Participants

$$
\begin{array}{cc}
\left\langle N_{p}^{(P)}\right\rangle=Z_{P} \frac{\sigma_{T}}{\sigma_{P T}},\left\langle N_{n}^{(P)}\right\rangle=\left(A_{P}-Z_{P}\right) \frac{\sigma_{T}}{\sigma_{P T}},\left\langle N_{p}^{(T)}\right\rangle=Z_{T} \frac{\sigma_{P}}{\sigma_{P T}},\left\langle N_{n}^{(T)}\right\rangle=\left(A_{T}-Z_{T}\right) \frac{\sigma_{P}}{\sigma_{P T}} \\
\sigma_{P(T)}=\int d \vec{b}\left(1-\left(1-T_{P(T)}(b) \sigma_{N N}\right)^{A_{P(T)}}\right), & \sigma_{P T}=\int d \vec{b}\left(1-\left(1-T_{P T}(b) \sigma_{N N}\right)^{A_{P} A_{T}}\right) \\
\text { nucleon-nucleus total cross section } & \text { nucleus-nucleus total cross section }
\end{array}
$$

Probability/area of a given nucleon being located in the projectile/target flux tube

$$
\begin{gathered}
T_{P}(|\vec{s}-\vec{b}|)=\int \rho_{P}\left(|\vec{s}-\vec{b}|, z_{P}\right) d z_{P} \\
T_{T}(s)=\int \rho_{T}\left(s, z_{T}\right) d z_{T}
\end{gathered}
$$

$$
T_{P T}(b)=\int T_{P}(|\vec{s}-\vec{b}|) T_{T}(s) d \vec{s}
$$

Effective overlap density where a nucleon of P can interact with a nucleon of T ("Thickness function")

In-medium NN cross sections

G-matrix gives access to in-medium NN cross sections

$$
\sigma_{\tau \tau^{\prime}}=\frac{m_{\tau}^{*} m_{\tau^{\prime}}^{*}}{16 \pi^{2} \hbar^{4}} \sum_{L L^{\prime} S J} \frac{2 J+1}{4 \pi}\left|G_{\tau \tau^{\prime} \rightarrow \tau \tau^{\prime}}^{L L^{\prime} S J}\right|^{2}, \quad \tau \tau^{\prime}=n n, p p, n p
$$

\checkmark microscopically based
\checkmark density dependence (Pauli blocking)
\checkmark isospin dependence (ρ_{n} different from ρ_{p})

We use, however, free NN cross sections

Nuclear Response

Nuclear response to the projectile/target scattering probe

$$
\mathrm{R}(\mathrm{q}, \omega)=\frac{\left.\sum_{i f}\left|\left\langle\psi_{f}\right| O_{q}\right| \psi_{i}\right\rangle\left.\right|^{2} \delta\left(E_{f}-E_{i}-\omega\right)}{\sum_{i}\left\langle\psi_{f}\right| O_{q}^{*} O_{q}\left|\psi_{i}\right\rangle}
$$

Calculated by Horst Lenske (Giessen Univ.) in local density approximation

Nucleus-Nucleus Differential Cross Section

\diamond Quasi-elastic contribution $\mathrm{A}_{1}+\mathrm{A}_{2} \longrightarrow \mathrm{~A}_{3}+\mathrm{A}_{4}$

$$
\frac{d^{2} \sigma}{d E_{3} d \Omega_{3} Q E} \left\lvert\,=\frac{2 p_{3} m_{1} m_{2} m_{3} m_{4}}{(2 \pi)^{2} \lambda^{1 / 2}\left(s, m_{1}^{2}, m_{2}^{2}\right)} \frac{\left|M_{Q E}\right|^{2}}{E_{2}}\left\langle N_{p a r t}\right\rangle \int d \omega R_{P}\left(p_{3}-p_{1}, \omega\right) R_{T}\left(p_{3}-p_{1}, \omega-k_{1}-k_{2}+k_{3}+k_{4}\right)\right.
$$

\diamond Inelastic contribution $\mathrm{A}_{1}+\mathrm{A}_{2} \longrightarrow \mathrm{~A}_{3}+\mathrm{A}_{4}+\pi$

$$
\left.\sum_{\text {in }} \frac{d^{2} \sigma}{d E_{3} d \Omega_{3}}\right|_{\text {in }}=\frac{p_{3} m_{1} m_{2} m_{3} m_{4}}{(2 \pi)^{5} \lambda^{1 / 2}\left(s, m_{1}^{2}, m_{2}^{2}\right)}\left\langle N_{p a r t}\right\rangle \int \frac{d^{3} p_{\pi}}{E_{4} E_{\pi}}\left|\sum_{c} M_{i n, c}\right|^{2} \int d \omega_{1} d \omega_{2} R_{P}\left(p_{3}-p_{1}, \omega_{1}\right) R_{T}\left(p_{3}-p_{1}, \omega_{2}\right)
$$

Integrating over the solid angle

$$
\frac{d \sigma}{d E_{3}}=\int d \Omega_{3}\left(\left.\frac{d^{2} \sigma}{d E_{3} d \Omega_{3}}\right|_{Q E}+\left.\sum_{i n} \frac{d^{2} \sigma}{d E_{3} d \Omega_{3}}\right|_{i n}\right)
$$

In the calculation, since the reaction is very peripheral doub. diff. cross sect. are evaluated at $\theta=0$ \& the integration is done over the solid angle covered by the experiment

Fermi Motion

Fermi Motion is incorporated by averaging the differential cross section over a range of values of the the invariant

$$
\frac{d \sigma}{d E_{3}}\left(E_{3}\right)=\frac{\int d s F(s) \frac{d \sigma}{d E_{3}}\left(E_{3}, s\right)}{\int d s F(s)}
$$ $\mathrm{s}=\left(\mathrm{p}_{1}+\mathrm{p}_{2}\right)^{2}$

distribution of the invariant s $\quad F(s)=\int d \vec{k}_{1} d \vec{k}_{2} \rho_{1}\left(\vec{k}_{1}\right) \rho_{2}\left(\vec{k}_{2}\right) \delta\left(s-2 m-2 E_{1} E_{2}+2 \vec{k}_{1} \cdot \vec{k}_{2}\right)$

Calculations are done using the analytical expressions of $\mathrm{F}(\mathrm{s})$ given in Sandel et al., PRC 20, 744 (1999)

(p.n) elementary reaction on a proton target at 0.8 GeV

- Clear dominance of Δ^{++} excitation in the target
- Good agreement between data \& model

Contribution from 5 processes
\diamond s-wave π emission in Target

$$
p(p, n) p \pi^{+}
$$

\diamond s-wave π emission in Projectile

$$
p\left(p, n \pi^{+}\right) p
$$

$\diamond \Delta^{++}$excitation in Target

$$
p(p, n) \Delta^{++}=p(p, n) p \pi^{+}
$$

$\diamond \Delta^{+} \& \mathrm{P}_{11}{ }^{+}$excitation in Projectile

$$
\begin{aligned}
& p\left(p, \Delta^{+}\right) p=p\left(p, n \pi^{+}\right) p \\
& p\left(p, P_{11}^{+}\right) p=p\left(p, n \pi^{+}\right) p
\end{aligned}
$$

Comparison with data: (p, n) channel

QE:
Rather good agreement once rescaled

Inelastic:
Little shoulder at the left of big peak due to the excitation of resonances in target nuclei. Model once rescaled described reasonably well

Big peak due to the excitation of resonances in projectile nuclei. Model cannot reproduce it (need to be solved)

Comparison with data: (n, p) channel

QE:
Rather good agreement once rescaled

Inelastic:
Little shoulder at the left of big peak due to the excitation of resonances in target nuclei. Model once rescaled described reasonably well

Big peak due to the excitation of resonances in projectile nuclei. Model cannot reproduce it (need to be solved)

Isospin content of the projectile tail: peripheral character of the reaction

Probability of having n NN collisions in the reaction

$$
P_{n}(b)=\binom{A_{P} A_{T}}{n}\left(T_{P T}(b) \sigma_{N N}\right)^{n}\left(1-T_{P T}(b) \sigma_{N N}\right)^{A_{P} A_{T}-n}
$$

(${ }^{112} \mathrm{Sn},{ }^{112} \mathrm{In}$) reaction on a ${ }^{12} \mathrm{C}$ target at $1 \mathrm{GeV} / \mathrm{A}$

Isospin content of the projectile tail: inclusive measurements

(n, p) channel

$$
\left({ }^{A} Z,{ }^{A}(Z+1)\right)
$$

(p, n) channel
$\left({ }^{A} Z,{ }^{A}(Z-1)\right)$

Consider the ratio $\quad R=\frac{\sigma_{\left(A_{Z, A}(Z+1)\right)}}{\sigma_{\left({ }^{A} Z, A^{A}(Z-1)\right.}}$
In the model

$$
\begin{aligned}
& R=\frac{\sigma_{n n \rightarrow p n \pi^{-}} N_{n n}+\sigma_{n p \rightarrow p p \pi^{-}} N_{n p}+\sigma_{n p \rightarrow p n \pi^{0}} N_{n p}}{\sigma_{p p \rightarrow n p \pi^{+}} N_{p p}+\sigma_{p n \rightarrow n n \pi^{+}} N_{p n}+\sigma_{p n \rightarrow n p \pi^{0}} N_{p n}} \\
& \approx \frac{N_{n}^{(P)}}{N_{p}^{(P)}} \times\left(\frac{\sigma_{n n \rightarrow p n \pi^{-}} N_{n}^{(T)}+\sigma_{n p \rightarrow p p \pi^{-}} N_{p}^{(T)}+\sigma_{n p \rightarrow p n \pi^{0}} N_{p}^{(T)}}{\sigma_{p p \rightarrow n p \pi^{+}} N_{p}^{(T)}+\sigma_{p n \rightarrow n n \pi^{+}} N_{n}^{(T)}+\sigma_{p n \rightarrow n p \pi^{0}} N_{n}^{(T)}}\right)
\end{aligned}
$$

This suggest $\longrightarrow \frac{N_{n}^{(P)}}{N_{p}^{(P)}} \propto f\left(N_{n}^{(T)}, N_{p}^{(T)}\right) R \quad \begin{array}{r}\text { How to disentangle ?. With } \\ \text { exclusive measurements ? }\end{array}$

Exclusive measurements \& isospin content of the projectile tail

(n,p) channel	(p,n) channel
(1) $:{ }^{A} Z+X \rightarrow{ }^{A}(Z+1)+\pi^{-}+X^{\prime}$	(3) $:{ }^{A} Z+X \rightarrow{ }^{A}(Z-1)+\pi^{+}+\tilde{X}$
(2) $:{ }^{A} Z+X \rightarrow{ }^{A}(Z+1)+\pi^{0}+X^{\prime \prime}$	(4) $:{ }^{A} Z+X \rightarrow{ }^{A}(Z-1)+\pi^{0}+\tilde{X}^{\prime \prime}$

In the model

$$
\begin{aligned}
& R_{1}=\frac{\sigma_{n n \rightarrow p n \pi^{-}} N_{n n}+\sigma_{n p \rightarrow p p \pi^{-}} N_{n p}}{\sigma_{p p \rightarrow n p \pi^{+}} N_{p p}+\sigma_{p n \rightarrow n n \pi^{+}} N_{p n}} \approx \frac{N_{n}^{(P)}}{N_{p}^{(P)}} \times\left(\frac{\sigma_{n n \rightarrow p n \pi^{-}} N_{n}^{(T)}+\sigma_{n p \rightarrow p p \pi^{-}} N_{p}^{(T)}}{\sigma_{p p \rightarrow n p \pi^{+}} N_{p}^{(T)}+\sigma_{p n \rightarrow n n \pi^{+}} N_{n}^{(T)}}\right) \\
& R_{2}=\frac{\sigma_{n p \rightarrow p n \pi^{0}} N_{n p}}{\sigma_{p n \rightarrow n p \pi^{0}} N_{p n}} \approx \frac{N_{n}^{(P)}}{N_{p}^{(P)}} \times\left(\frac{\sigma_{n p \rightarrow p n \pi^{0}} N_{p}^{(T)}}{\sigma_{p n \rightarrow n p \pi^{0}} N_{n}^{(T)}} \quad\right. \text { Seems as entangled as } \\
& \text { before !! }
\end{aligned}
$$

This suggest $\longrightarrow \frac{N_{n}^{(P)}}{N_{p}^{(P)}} \propto f\left(N_{n}^{(T)}, N_{p}^{(T)}\right) R_{1}, \frac{N_{n}^{(P)}}{N_{p}^{(P)}} \propto g\left(N_{n}^{(T)}, N_{p}^{(T)}\right) R_{2}$

The cleanest case: measurements with a proton target

$$
\begin{aligned}
& \text { In this case we can } \\
& \text { consider just one ratio }
\end{aligned} \quad R_{1}=\frac{\sigma_{\left({ }^{A} Z,{ }^{A}(Z+1)\right)}^{(1)}}{\sigma_{\left({ }^{A} Z, S^{A}(Z-1)\right)}^{(3)}}
$$

$$
\begin{gathered}
R_{1}=\frac{\sigma_{n p \rightarrow p p \pi^{-}}}{\sigma_{p p \rightarrow n p \pi^{+}}} \frac{N_{n p}}{N_{p p}} \sim \frac{\sigma_{n p \rightarrow p p \pi^{-}}}{\sigma_{p p \rightarrow n p \pi^{+}}} \frac{N_{n}^{(P)} N_{p}^{(T)}}{N_{p}^{(P)} N_{p}^{(T)}}=\frac{N_{n}^{(P)}}{N_{p}^{(P)}} \times\left(\frac{\sigma_{n p \rightarrow p p \pi^{-}}}{\sigma_{p p \rightarrow n p \pi^{+}}}\right) \\
\quad \text { in this case } \longrightarrow \frac{N_{n}^{(P)}}{N_{p}^{(P)}} \propto R_{1}
\end{gathered}
$$

Isospin content of the projectile: model estimations

\diamond Projectile mass number dependence

\diamond Target atomic number dependence

Neutron Skin Thickness \& Symmetry Energy

Accurate measurements of

$$
R=\frac{\sigma_{\left(A_{Z,}{ }^{A}(Z+1)\right)}}{\sigma_{\left(A_{Z, A}{ }^{A}(Z-1)\right)}}
$$

can be used to extract the neutron skin thickness of heavy nuclei \& L
${ }^{136} \mathrm{Xe}$ on a proton target at $1 \mathrm{GeV} / \mathrm{A}$

Take home message

\diamond Results are still very preliminar
\triangleleft The spectrum structure is rather well understood
\diamond Quasi-elastic peak at low missing energies
\& Inelastic channel:

- Data: little shoulder at approx. -334 MeV , about 60 MeV at the left of the big peak due to, according to the model, the excitation of the nucleon resonances in the target nuclei
- Data: big peak at about -274 MeV , due to , according to the model, the excitation of the nucleon resonances in the projectile nuclei (model, however, must be improved in this case)
\triangleleft Sensitivity to the isospin content of the projectile tale
\diamond Neutron skin thickness \& Symmetry Energy from ICER?
- You for your time \& attention
- My collaborators from the SuperFRS collaboration J. Benlliure, H. Geissel, C. Sheidenberger, H. Lenske \& many many others ...

Frapse.

