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``Rich’’ networks à generalised graphs

Node and links are in space and in time (spatial networks
temporal networks)

Node and links can be of different types (multiplex, 
interconnected networks

The basic units are not only nodes and links (hypergraphs, 
simplicial complexes)

Simplicial models of social contagion,  
Iacopini, Petri, Barrat, Latora 
Nature Communications 10, 2485 (2019)    



Interconnected networks

Electric power grid

Communication 
systems, e.g Internet

Buldyrev et al, Nature 2010



Interconnected networks

Buldyrev et al, Nature 2010



Interconnected networks



Multiplex networks

M=3 layers



Multiplex networks

M=3 layers



More is different !!!

COMPLEX SYSTEMS:
Many units in interaction give rise 
to emergent behaviors !!



Is multiplex different ??

Q:     Is multiplex more than just a sum of many 
layers?   
Q:     Emergent ``multiplex behaviors’’ ?



Structure and Dynamics of Multilayers
Outline:

How to represent a network with many layers

Extension of standard measures to multiplex networks 

Intrinsic multiplex measures

Modeling the growth of a multiplex

Reducibility of a multiplex

Dynamics: Examples of emergent behaviors induced by 
multiplexity 



Interconnected networks
Electric power grid

A ∈ℜNA⋅NA A = {aij}

B ∈ℜNB⋅NB B = {bij}

Internet

NA

NB

Nodes 

M ∈ℜNA⋅NB M = {mij}

Intra-layer 

Intra-layer   

Inter-layer   

Adjacency matrix

Adjacency matrix



L>2  interconnected networks

T ∈ℜN⋅N⋅L⋅L T = {tiαjβ}

N1,N2,...,Nα,...,NLNodes 

Intra-layer 
adjacency matrices  

Rank-4 
adjacency  tensor

Inter-layer 
adjacency matrices  M αβ α,β =1,...,L α ≠ β

Aα α =1,...,L

=

A1 M 12 ... M 1L

M 21 A2 ... M 2L

... ... ... ...
ML1 ML2 ... AL

⎛

⎝

⎜
⎜
⎜
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⎞

⎠

⎟
⎟
⎟
⎟⎟

ASupra-adjacency 
matrix  

∈ℜ(N1+N 2+...+NL )⋅(N1+N2+...+NL )A

De Domenico at al.  PRX 3, 041022 (2013) 



Multiplex networks

=

A1 I I ... I
I A2 I ... I
I I A3 ... I
... ... ... ... ...
I I I ... AL

⎛
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A

A = {A1,A2,...,AL}

One-to-one correspondence of nodes

Layer 1

Layer 2

Layer 3



Temporal networks

=

A1 I 0 ... 0
0 A2 I ... 0
0 0 A3 ... 0
... ... ... ... ...
0 0 0 ... AL

⎛
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⎟⎟

A

Aord = {A1,A2,...,AL}

Temporal causality constraints
Time 1

Time 2

Time 3

P. Holme, J. Saramaki, Temporal networks,  Phys. Rep. 519, 97 (2012)              
and Springer book 2013

J. Tang, et al, Time-varying graphs, PRE 81, 055101(R) (2010) 



Empirical analysis 
and modelling 

of
MULTIPLEX NETWORKS 



Multiplex networks data sets



Multiplex networks data sets



Multiplex networks

Chemical 
Interactions 

C. elegans



Varshney et al. PLOS Comp. Biology 7, e1001066 (2011) 
Bentley et al. PLOS Comp. Biology 12, e1005283 (2016) 

Chemical
Synapses

Gap
Junctions
(asa electrical 
synapses)



Guillon et at, Scientific Reports (2017)        

EEG - Different frequencies
fMRI – Functional 

magnetic 
resonance

DTI – Diffusion tensor
imaging

Battiston et at, Chaos (2017)



Multiplex networks data sets 

Cardillo, Gomez-Gardenes et al. Sci Rep 3, 1344 (2013) 



Multiplex networks data sets 

Di Domenico et al., Nat Comm. 2015 



Basic node properties

degree  kj

where bj
[α ] =

1 if k j
[α ] ≠ 0

0 if k j
[α ] = 0

⎧

⎨
⎪

⎩⎪

= (kj
[1],kj

[2],...,kj
[L ] )kj

degree 
vector 

= (bj
[1],bj

[2],...,bj
[L ] )bj

Node-activity vector

= (0,1, 0..., 0)bj



Basic node properties
Bi = bi

[α ]

α

∑

Nicosia, Latora, PRE 92, 032805 (2015) 

Node activity



Basic layer properties
Layer-activity vector

N [α ] = bi
[α ]

i
∑

d[α]= (b1[α ],b2[α ],...,bN[α ] ) where bj
[α ] =

1 if k j
[α ] ≠ 0

0 if k j
[α ] = 0

⎧

⎨
⎪

⎩⎪

Layer-activity



Basic layer properties
Correlations of layer activity Q[α ],[β ] =

1
N

bi
[α ]bi

[β ]

i
∑

size = N [α ]

color = strength

Nicosia, Latora, PRE 92, 032805 (2015) 



Node cartography
Overlapping 
degree

Participation
coefficient

Trust
Operational
Communication

Battiston, Nicosia, Latora, 
Structural measures for multiplex, PRE 89, 032804 (2014) 



Degree-degree correlations

Assortative:
positive correlations

Disassortative:
negative correlations

k k’
Conditional probability that a link from 
a node of degree k goes to a node of 
degree k’



Degree-degree correlations: 
assortative vs disassortative

Pastor-Satorras, Vespignani PRL 01

knn (k) = k 'Pk '|k
k '
∑

k k’



Inter-layer degree correlations

Nicosia, Latora, Measuring and modelling correlations in multiplex networks 
PRE 92, 032805 (2015) 



Inter-layer degree correlations

Nicosia, Latora, Measuring and modelling correlations in multiplex networks 
PRE 92, 032805 (2015) 



Modelling 
of

MULTIPLEX NETWORKS 



Growing multiplex graphs

Linear attachment

Πi→ j ∝ kj

m=2 stubs at each layer

New nodes with m=2 stubs



Linear-attachment model

Nicosia et al, PRL 111, 058701 (2013) 

+   simultaneous or power-law delayed arrival

Assortative 
correlations (only)



Nonlinear attachment model

Nicosia et al, PRE 90, 042807 (2014) 

Nonlinear attachmentΠi→ j
[1] ∝ f (kj,qj )

f (k,q) = kαqβ
Πi→ j
[2] ∝ f (qj,kj )



Nonlinear attachment model

Nicosia et al, PRE 90, 042807 (2014) 

f (k,q) = kαqβ

Assortative and disassoartative 
correlations

α =1



Communities



Danon, Diaz-Guilera, Duch, Arenas,  JSM  2005

Communities
CM condensed matter
P    particle
N    nuclear
I     interdisciplinary

A  Action
T Thriller
R Romance
C Crime



Battiston, Iacovacci, Nicosia, Bianconi, Latora, PLOS ONE 2016

A model to grow communities
Five 

parameters

p*

Intra-layer triadic closure 

Overlap of neighbours of new node i

p[α ] p[β ]

m[α ] m[β ] p[α ] p[β ] p*

i

i



A model to grow communities

Battiston, Iacovacci, Nicosia, Bianconi, Latora, PLOS ONE 2016

m[α ] m[β ] p[α ] p[β ] p*



A new class of models

Pareto optimality in multilayer network growth 
Santoro, Latora, Nicosia, Nicosia, PRL 121, 128302 (2018) 

Multi-objective optimization (MOO) model 



Reducibility of a multiplex 

Worldwide food import/export 

N=184    M=340 layers !!!

Do we need to keep all the layers ?



QUANTUM SYSTEMS
Density operator

Tr(ρ) =1

GRAPHS

Tr(L) =1

L = 1
2K

D− A[ ]

Combinatorial Laplacian

Von Neumann entropy of 
a graph:

measures the complexity 
of a graph  

hG = −Tr[L logL]

Braunstein, Ghosh, Severini, 
Ann. Comb. 10, 291 (2006) 

Analogy between:  

ρ = ps ψs
s
∑ ψs

Von Neumann (entanglement) 
entropy:

measures the mixedness of 
a system

hVN = −Tr[ρ logρ]

for pure stateshVN = 0



The Von Neumann entropy of a multiplex
Original Multilayer Reduced multilayer

C = {C[1],C[2],...,C[X ]}
X ≤M

Where hG is the Von Neumann 
entropy of graph G 

hG = −Tr[LG log2 LG ]= − λi log2 λi
i=1

N

∑
H (C) = 1

X
h
C[α ]

α=1

X

∑

THE IDEA: look for reduced multilayer networks which 
minimize the Von Neumann entropy (complexity)



Distinguishibility from the aggregate 

Aggregate 

Reduced multilayer

A = A[1] + A[2] +...+ A[M ]

C = {C[1],C[2],...,C[X ]} X ≤M

H (C) = 1
X

h
C[α ]

α=1

X

∑

X =1
Distinguishability 
between C and A q(C) =1− H (C)

hA

We look for reduced multilayer graphs which maximize
the distinguishability from the aggregate.

Exhaustive search: number of partitions 
of M objects grows exponentially with M



A greedy hierarchical algorithm 

Distinguishability q
(based on Von Neumann entropy) 

q

Jensen-Shannon
divergence



Jensen-Shannon Divergence

Kullback-Liebler divergence:
the information gained about       when the expectation is based only on σ ρ

is not a metric



Reducibility? 

Structural reducibility of multilayer networks
De Domenico, Nicosia, Arenas, Latora,  Nature Communications 2015



Reducibility? 

Structural reducibility of multilayer networks
De Domenico, Nicosia, Arenas, Latora,  Nature Communications 2015

Worldwide food import/export 



Reducibility? 

Structural reducibility of multilayer networks
De Domenico, Nicosia, Arenas, Latora,  Nature Communications 2015

340 layers

182 
layers

Worldwide food import/export 



Reducibility? 

From 13 layers     à 12 layers



Summing up 
How to represent the structure of a multiplex network

Extension of basic measures 

Intrinsic multiplex measures

Modeling the growth of a multiplex

Reducibility of a multiplex 

Kivela et al., Multilayer networks, Journal of Complex Networks 2014

Boccaletti et al, Structure and dynamics of multilayer networks, Phys. Rep 2014

De Domenico et al, Physics of spreading processes in multilayer, Nat Phys 2016

Battiston et al, When multiplex really matters: the emergent dynamics of
multiplex networks, soon on ArXiv 

Dynamics on multiplex networks



Multiplex mobility networks  
Slower is faster effects and multiplex Braess’ paradox

DYNAMICS 
Irreducibility of the voter model  

Dynamical inequivalence of multiplex and aggregate
Diakonova, Nicosia, Latora, San Miguel, New J. Phys. 18 (2016) 023010 

Axelrod model on multiplex nets  
The emergence of robust multiculturality

Battiston, Nicosia, Latora, San Miguel, Scientific Reports 7, 1809 (2017) 

Manfredi, DiTucci, Latora, PRL 120, 068301 (2018)



¢

Multimodal mobility networks

Lay 1

Lay 2



Mobility networks with finite storage capacity

i

q
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i
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qi
α (t)

Bi
α

Queue length
at node

Node capacity
(buffer size)

qi
α (t) ≤ Bi

α

Time to traverse 
the link

Congestion cost 

Cost 
function
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B=40

B=103
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Static Model

The slower is faster effect
2 layers, N1=150, N2=30

γ ij
11 = γ ij

12 =1 ∀i, j

γ ij
22 = γ 0 < γ ≤1
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Lay 1

Lay 2

Manfredi, DiTucci, Latora, PRL 120, 068301 (2018)



Braess’ paradox
Av

er
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e 
tra

ve
l t
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e

B
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BTmin ≈
γQh

N1 + N 2 −
Qh
O

γ =
γ11K1 +γ 22K 2 +γ12K12

K1 +K 2 +K12

BTmin

γ

Analytical prediction:

Manfredi, DiTucci, Latora, PRL 120, 068301 (2018)

γAt      fixed

Optimal value of the buffer
(which depends on     )γ



Two different types of dynamics  
Explosive synchronisation induced by multiplexity

DIFFERENT DYNAMICS 

Nicosia, Skardal, Arenas, Latora, PRL 118, 138302 (2017)



DYNAMICS 1: Synchronization of coupled 
oscillators

N Kuramoto oscillators

Order parameter

Phase transition (continuous) 

ϑ1

ϑ 2

ϑ3

ϑ 4

ϑ 5



DYNAMICS 2 : Random walks
Exploration….with only local information

π ji = prob(i→ j) =
aij
ail

l
∑

=
aij
ki

i

Searching items on p2p nets

Ranking Web pages



€ 

α > 0

€ 

α < 0

€ 

α = 0

Walkers prefer high-degree nodes

Walkers prefer low-degree nodes

we get back to unbiased (plain) random walk

J. Gomez-Gardenes, V. Latora, 
Phys. Rev. E 78, 065102R(2008) 

Degree-biased random walks

€ 

π ji =
aijk j

α

ailkl
α

l
∑



OUR MODEL: Random walkers + Kuramoto 

Nicosia, Skardal, Arenas, Latora, PRL 118, 138302 (2017)

LAYER 1    Kuramoto dynamics

Πi→ j ∝ aij
[2](sj

[1])α
LAYER 2   Biased random walks

!ϑ i =ωi +λ aij
[1] sin(ϑ j −ϑ i )

j
∑

ωi ∝ #walki
[2]

aij
[2]

aij
[1]

Bidirectional 
dependence 

Frequencies at L1 depends on # of walkers at L2

Walk at L2 depends on local synchronisation at L1



Coupled networks in the brain

LAYER 1    Kuramoto dynamics LAYER 2   Biased random walks



Random walkers + Kuramoto dynamics

Dynamical strength of i: 
Level of local synchronisation
of oscillator i



Explosive synchronization in multiplex nets
LAYER 1    Kuramoto dynamics on SF graph

LAYER 2   Biased random walks on ER random graph

Discontinuous phase transition for large values
of the bias exponent (fast switching in the brain?)



Discontinuous PT at L1
α =1 λ = 0.1

α =1 λ = 0.4

Homogeneous-heterogeneous 
distribution of random walkers at L2 

Explosive synchronization in multiplex nets



Analytical derivation

Nicosia, Skardal, Arenas, Latora, 
PRL 17 

#walksi
[2]∝ ki

[2]

Heterogeneous 
mean-field

#walksi
[2]∝ ki

[2](ki
[1])α (k[1])α



Summing up 

Intrinsically multiplex structural properties

Reducibility of a multiplex 

Multiplexity-induced collective behaviors

Battiston et al, When multiplex really matters: the  
emergent dynamics of multiplex networks, 
soon on ArXiv 



Books on multilayer networks 
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Principles, Methods and Applications
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VINCENZO NICOSIA 
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Somebody, somewhere

Networks constitute the backbone of complex systems, from the human 

brain to computer communications, transport infrastructures to online 

social systems, metabolic reactions to financial markets. Characterising their 

structure improves our understanding of the physical, biological, economic 

and social phenomena that shape our world.

Rigorous and thorough, this textbook presents a detailed overview of the 

new theory and methods of network science. Covering algorithms for graph 

exploration, node ranking and network generation, among the others, the 

book allows students to experiment with network models and real-world 

data sets, providing them with a deep understanding of the basics of network 

theory and its practical applications.  Systems of growing complexity are 

examined in detail, challenging students to increase their level of skill.  An 

engaging presentation of the important principles of network science makes 

this the perfect reference for researchers and undergraduate and graduate 

students in physics, mathematics, engineering, biology, neuroscience and 

social sciences.
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But do not forget:   


