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Why interdisciplinary research matters?
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Success in science?
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Entanglement, the essential resource in quantum information processing, should be witnessed in many
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Measures of interdisciplinarity
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Measures of interdisciplinarity
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The advantages of interdisciplinarity
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The price of interdisciplinarity
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Social exposure to interdisciplinarity
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Social exposure to interdisciplinarity

o
- O Astrophysics
.U § O Biology
7. 7 O Complex Nets
R Y O o et e e

Coauthorship networks

Newman, The structure of scientific collaborations, PNAS 2001



Social exposure to interdisciplinarity
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Exposure to interdisciplinarity
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Strategies to interdisciplinarity
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Take home message

We have to work together,
but interdisciplinarity is
rewarding if....

YOU'LL FIND IT'S MORE EFFECTIVE IF
WE ALL PULL TOGETHER! .

WO CARTOONSTOCK

:COIT

if...."extreme”....

THIS 1S AN INTERDISCIPLINARY PROGRAM
IN WHICH PHYSICS STUDENTS TRY TODHIT
PSYCHOLOGY STUDENTS WITH PENDULLMS.

=N




(2) How funding
shapes
collaborations

In science?

Ma, Mondragon, Latora PNAS 112 (48), 14760 (2015)
Anatomy of funded research in science
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The funded collaboration network
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Rich-club behavior in networks
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Rich club behavior The rich core in 2010
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Extracting the rich core
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Fig 1. The rich—core for the Zachary Karate Club network. (A) The number of links k" that node r shares
with nodes of a higher rank. The boundary of the core is marked by k where k' is at its maximum, as
indicated by the dotted line. (B) A graphical representation of the network with core (black) and periphery
(white) nodes derived from the rich—core method.

doi:10.1371/journal.pone.0119678.g001

Ma, Mondragdon PLoS ONE 10(3): e0119678 (2015)



The rich core of the university network

Affiliation Abbreviation | Grants Total £ Comg | Magre | N
Imperial College Imperial 2,658 | 880,042,691 | 0.847 28 27
University of Cambridge Cambridge 2,182 | 785,600,273 | 0.806 27 28
University of Manchester Manchester 2,351 | 612,256,769 | 0.830 27 28
University of Oxford Oxford 1,966 | 557,758,967 | 0.818 28 28
University College London UCL 1,417 | 543,449,634 | 0.828 27 27
University of Southampton Southampton 1,373 | 508,545,865 | 0.763 27 26
University of Sheffield Sheffield 1,367 | 408,240,769 | 0.803 28 27
University of Nottingham Nottingham 1,411 | 393,624,426 | 0.755 27 26
University of Edinburgh Edinburgh 1,191 | 376,515,957 | 0.747 25 27
University of Leeds Leeds 1,452 | 369,915,734 | 0.822 28 27
University of Bristol Bristol 1,259 | 357,784,563 | 0.751 27 15
University of Birmingham Birmingham 1,059 | 320,365,372 | 0.784 27 18
University of Warwick Warwick 1,111 | 299,106,838 | 0.712 27 10
Loughborough University Loughborough 971 | 292,614,129 | 0.747 25 17
University of Strathclyde Strathclyde 1,004 | 267,072,205 | 0.746 24 19
University of Glasgow Glasgow 857 | 247,098,481 | 0.777 24 15
University of Liverpool Liverpool 966 | 240,086,056 | 0.760 26 15
University of Bath Bath 992 | 238,851,816 | 0.675 27 19
Newecastle University Newcastle 813 | 222,668,660 | 0.748 26 20
Heriot-Watt University Heriot Watt 857 | 202,088,932 | 0.754 24 21
University of Surrey Surrey 783 | 200,322,051 | 0.726 24 11
Durham University Durham 776 | 172,691,133 | 0.684 25 11
University of St Andrews St Andrews 515 | 166,131,172 | 0.687 8 0
Cranfield University Cranfield 578 | 164,867,131 | 0.714 18 0
Queen’s University Belfast Queen’s 660 | 142,904,945 | 0.712 14 2
Queen Mary, UoL QMUL 618 | 139,471,209 | 0.685 12 5
Cardiff University Cardiff 648 | 133,551,032 | 0.740 23 6
University of York York 611 | 128,477,800 | 0.703 16 2




Funding and research performance
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Affiliation Abbreviation Grants Total £ | N,,e Cave
Imperial College Imperial 2658 | 880,042,691 28 | 0.847
University of Cambridge Cambridge 2182 | 785,600,273 27 | 0.806
University of Manchester Manchester 2351 | 612,256,769 27 | 0.830
University of Oxford Oxford 1966 | 557,758,967 28 | 0.818
University College London UCL 1417 | 543,449,634 27 | 0.828
University of Southampton Southampton 1373 | 508,545,865 27 1 0.763

A few elite univ get more funds than expected from the
observed linear relation between N, and funding !




IS THAT A SENSIBLE
WAY TO USE MONEY? \




Funding and research performance
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Take home message
Elite universities form

| =N\ A\[gz=
a rich club and act as "“ .y
brokers of knowledge 4- 70 =

Elite universities overattract
resources but.....

Knowledge
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The sad truth

LETTER

do0i:10.1038/nature18315

Interdisciplinary research has consistently lower
funding success

Lindell Bromham!, Russell Dinnage' & Xia Hua'

IResearch School of Biology, Australian National University, 116 Daley Road, Canberra 0200, Australia.

684 | NATURE | VOL 534 | 30 JUNE 2016
© 2016 Macmillan Publishers Limited. All rights reserved




(3) Predicting the success
of startups

Bonaventura, Ciotti, Panzarasa, Liverani, Lacasa, Latora
arXiV:1904.08171



STARTUP = newly emerged small business

that aims to meet a marketplace need by

developing an innovative product, process
or service


https://en.wikipedia.org/wiki/Business

# New Start-ups per year
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9 out of 10 startup businesses FAIL




=- BASED ON ANALYSIS OF 101 STARTUP POSTMORTEMS

Top 20 Reasons Startups Fail
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he magic ingredients of the
success of a startup ?

Tons of coffee
meetings and

beers
¢

)
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Data and network construction

CrunchBase

Wikipedia of start-ups -
403,000 organisations Ange"-|St

409,000 individuals Social platform

176,000 startups
/O 657,000 individuals

R

Location, market sectors
Team (Founders, advisors, board members, employees)
News: IPO (Initial public offer), Funding rounds
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The WWS (World-Wide Startup) network
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Predicting the success of startups

Ranking startups by their closeness centrality

in the WWS network
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Our recommendation list

May 2012
Rank All companies list Open-deals list Jun 2012
1 Google Airbnb
2 Apple Uber <€ DT > ‘
3 Facebook Eventbrite
4 Intuit
5 Airbnb
6 Digg
! Tuiter VALIDATION: Check
8 Uber e
| positive outcome of the
9 Eventbrite . .
company in a DT window
Top20 open-deals: 1) startup makes an acquisition
2) itis acquired
younger than 2 years 3) it undergoes an IPO

0)

1) NOT YET received funding
2) NOT YET been acquired
3) NOT YET in stock markets



Validating our recommendations
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Bonaventura, Ciotti, Panzarasa, Liverani, Lacasa, Latora
arXiV:1904.08171



Validating our recommendations
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Bonaventura, Ciotti, Panzarasa, Liverani, Lacasa, Latora
arXiV:1904.08171



Real investors performance

Investor # investments | # successful investments | Success rate
500 Startups 1022 153 15%
Y Combinator 953 154 16%
Intel Capital 744 313 40%
Start-up Chile 710 10 1.4%
Sequoia Capital 700 267 38%
New Enterprise Associates (NEA) 672 272 40%
SV Angel 600 258 43%
Techstars 549 95 17%
Brand Capital 537 80 14%
Accel Partners (Accel) 536 270 50%
Sos Ventures (SOSV) 493 17 3%
Wayra 476 11 2%
Kleiner Perkins Caufield & Byers (KPCB) 457 203 43%
Right Side Capital Management (RSCM) 449 A 10%
Goldman Sachs 410 209 50%

Table S1: Top 15 investment companies according to the number of investments made, along
with the percentage of successful investments. Highlighted in pink are investors focused on
very early-stage companies as those considered in our open-deal lists. The success rates of such
investors are comparable to the random expectation null model, and much below the success
rate obtained using our recommendation method.




(2) How funding
shapes
collaboration
networks

In science

(1) The advantages of
interdisciplinarity in
modern science

(3) Predicting the success of startups



Many thanks to the inderdisciplinary
collaborators at QMUL

- Athen Ma, Raul Mondragon  Engineering and Computer
Science, QMUL

- Pietro Panzarasa Business, QMUL

- Moreno Bonaventura, Valerio Ciotti, Enzo Nicosia,
Silvia Liverani, Lucas Lacasa

Complex Systems and Networks Group,
Mathematical Sciences, QMUL
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https://doi.org/10.1038/541467-019-10213-0 OPEN

Quantifying and predicting success in show
business

Oliver E. WiIIiams1, Lucas Lacasa' & Vito Latora® 234
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Williams, Lacasa, Latora, Nat. Comm. 10, 2256 (2019)
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PHYSICAL REVIEW LETTERS 120, 048301 (2018)

Network Dynamics of Innovation Processes

Tacopo Iacopini,l’2 StaSa Milojevié,3 and Vito Latora"”
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illﬂmfe behavi LETTERS
uman e avlour PUBLISHED: 8 FEBRUARY 2017 | VOLUME: 1| ARTICLE NUMBER: 0043

Characterization of hunter-gatherer networks and
implications for cumulative culture

A. B. Migliano™, A. E. Page', J. Gomez-Gardeiies?, G. D. Salali’, S. Viguier!, M. Dyble’, J. Thompson',
Nikhill Chaudhary!, D. Smith’, J. Strods’, R. Mace', M. G. Thomas3, V. Latora* and L. Vinicius'
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