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Interactions



Model  of interacting phase 
oscillators
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Complex networks… 
..i.e. what can we learn of a 
complex system by looking at the 
backbone of its interactions ?



Two examples



Example 1: Bird flocks



In a complex system, simple rules 
give rise to complex behaviors

We have many individuals plus their interactions…..
…..or even more than that !!

“More is different”
Anderson, Science 1972



In a complex system, simple rules give rise to complex behaviors

Vicsek et al.  PRL 75(1995) 1226 

SEPARATION

Steer to avoid crowding
local flockmates  

ALIGNMENT

Steer to the average heading 
of local flockmates

COHESION

to move towards the average 
position of local flockmates

Reynolds (1986): Flocking model

INTERACTIONS are the MAGIC INGREDIENT !!

Ballerini et al. PNAS 105(2008)1232



We represent the interactions in a complex system 
as a complex network !!!

1)  The animals are the nodes of the network  

2) The interactions are the links of the network  (can be weighted, 
directed, time-varying, etc..)

3) Networks are usually sparse, and neither regular nor random    

Three months of 
primate interactions
L. Wolfe (1992)



Example 2:



Example 2: The life of the party 
(Moody et al. 2005)

• A social network changing over time
• Kamada-Kawai (springs)
• Two types of nodes, three types of links



The life of the party 
(Moody et al. 2005)

• Encounters shrink social distances
• 95% of encounters with pre-known  
• Bridging (n=24)
• Outside the party network (n=18)
• n=40 knows only 10 (av=31). Ends up with 23 new
• Homophilous pairings (n=30 + 31)
• High physical attractiveness (n63) vs low (n82)
• High self-monitors (size) (n=79)



It is exciting research to do 
because…

..networks are everywhere !!



Relationships 
in high school

Social  Networks

...You can construct yourself your home-made 
social network !!!             



Friendships at  the kindergarten of my daughter Elisa (2006)    

Social  Networks



KARATE CLUB
Zachary 1977

DOLPHINS 
Lusseau et al
2003

COMICS

Other three social examples



Zachary’s karate club 
Outside club activities (3 years of observations before fission 
by anthropologist Wayne Zachary) 

Fission:16 members following 1 (the instructor Mr. Hi), 
18 members following  34 (Mr. John A. the administrator) 



The good and the bad collaboration net

Researchers at the Santa Fe Institute, Newman PNAS 04



The good and the bad collaboration net

Krebs, Connections 2001 

Weighted 
network



Collaboration  network of scientists working on networks !!!

Newman PRE07



Citation network between authors working on networks 

Radicchi et al.  PRE 80, 056103 (2009) 



Fowler, Christakis. 2008 

``Dynamic spread of happiness in a large social 
network: longitudinal analysis over 20 years in 
the Framingham Heart Study.’’

British Medical Journal 337, no. a2338: 1-9 

Happiness is……



Happiness is……having happy friends !!



Obesity is….. 
having 

obese  friends ??





Tens of examples in biology

Protein interaction network
in the Yeast (S.C.)

Food Webs



C. elegans: layout of ganglia  

Brenner et al, 1975 mapped every single 
nervous cell, synapses and gap junctions

Brain networks: anatomical connectivity

Cortical regions of macaque

Neuron network 

Links between cortical areas 



EEG, MEG, fMRI
signals

Coherence,  
synchronization, 
causality

Brain networks: functional connectivity

Functional 
connectivity

Bullmore, Sporns, Nature Review Neuroscience 2009



Do not forget man-made systems !!

-Hyperlinks between Web 
pages

-- directed network

-- the largest net 



20 years of Complex Networks

1) Characterize the structure of  large real networks

2) Developing new models (growing graphs)

3) Dynamical processes (percolation, diffusion, 
spreading, games, network of dynamical systems) 

Watts, Strogatz, Nature 393, 440 (1998)

Barabasi, Albert, Science 286, 509 (1999)



Barabasi-Albert
Rev. Mod. Phys 2001

Random
graphs

Degree distributions 

Scale-free 
networks

Poisson distribution Power-law distribution

P(k) ≈ k−γ



Scale-free networks 
Networks Exponent

Internet 2.4
WWW 2.1 2.7
Protein 2.4
Metabolic 2.2    2.1
Coauthorship 2.5
Movie actors 2.3

P(k) ≈ k−γ

Generalized random graphs 

2 < γ ≤ 3⇒

#

$
%

&
%

k finite

k2 →∞

Actors WWW
γ = 2.3 γ = 2.1



The Barabasi-Albert model 

Barabasi, Albert, Science 286, 509 (1999)

1) Growth : a node (with m links) is added at every time step

2) Linear preferential attachment:  

€ 

Πn→i ∝ ki

P(k) t→∞
# →## ck−3



Epidemic spreading 

SIS model

Epidemic 
threshold 

σ =
λ
µ

No endemic state (i*=0) if

σ <σ c =
1
k

σ c

€ 

S + I λ# → # I + I

€ 

I µ" → " S

Transmission rate

Recovery rate
S = susceptible
I  = infected



Epidemic spreading in scale-free nets 

Pastor-Satorras, Vespignani, PRL 86, 3200 (2001)

σ c =
k
k2 N→∞

# →## 0

No epidemic threshold 

€ 

S + I λ# → # I + I

€ 

I µ" → " S

Transmission rate

Recovery rate



Structure and dynamics of complex nets 

- Structural descriptors of networks from the real world
node properties, degree distributions, degree-degree correlations, 
motifs, communities

- New graph models
random graphs with P(k), models of graph growth, correlated graphs

- The structure affects the function
percolation, diffusion, spreading of diseases, searching information,
routing protocols, coupled dynamical systems

Albert, Barabasi, Rev. Mod. Phys. 74 (2002) 47
Newman, SIAM Rev. 45 (2003) 167 
Boccaletti, Latora, Moreno, Chavez, Hwang, Phys Rep 424 (2006) 175
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Networks constitute the backbone of complex systems, from the human 

brain to computer communications, transport infrastructures to online 

social systems, metabolic reactions to financial markets. Characterising their 

structure improves our understanding of the physical, biological, economic 

and social phenomena that shape our world.

Rigorous and thorough, this textbook presents a detailed overview of the 

new theory and methods of network science. Covering algorithms for graph 

exploration, node ranking and network generation, among the others, the 

book allows students to experiment with network models and real-world 

data sets, providing them with a deep understanding of the basics of network 

theory and its practical applications.  Systems of growing complexity are 

examined in detail, challenging students to increase their level of skill.  An 

engaging presentation of the important principles of network science makes 

this the perfect reference for researchers and undergraduate and graduate 

students in physics, mathematics, engineering, biology, neuroscience and 

social sciences.

V ITO L ATOR A is Professor of Applied Mathematics and Chair of Complex 

Systems at Queen Mary University of London. Noted for his research in 

statistical physics and in complex networks, his current interests include time-

varying and multiplex networks, and their applications to socio-economic 

systems and to the human brain.

V INCENZO NICOSIA is Lecturer in Networks and Data Analysis at the 

School of Mathematical Sciences at Queen Mary University of London. His 

research spans several aspects of network structure and dynamics, and his 

recent interests include multi-layer networks and their applications to big 

data modelling.

GIOVANNI RUSSO is Professor of Numerical Analysis in the Department 

of Mathematics and Computer Science at the University of Catania, Italy, 

focusing on numerical methods for partial differential equations, with 

particular application to hyperbolic and kinetic problems.

C O V E R  D E S I G N E D  B Y  H A R T  M c L E O D  LT D

A new textbook               October 2017  



Complex Networks:
Priciples, Methods and Applications  

à .... another one

à But different: each chapter contains an idea, a network to

explore it, the mathematical background, and an application

à You are given the ``historically famous’’ network data sets 
+ algorithms



The new hot topics in 
Network Science 



``Rich’’ networks à generalised graphs

Node and links are in space and in time (spatial networks
temporal networks)

Node and links can be of different types (multiplex, 
interconnected networks

The basic units are not only nodes and links (hypergraphs, 
simplicial complexes)

Simplicial models of social contagion,  
Iacopini, Petri, Barrat, Latora 
Nature Communications 10, 2485 (2019)    



M. Barthelemy, Spatial networks, Phys. Rep. 499 (2011) 1–101

New hot topics:  Spatial networks

Power
grids

Urban
street
patterns

Nervous system



S. Porta, P. Crucitti, V. Latora, Env. and Planning B33, 705 (2006) 

Urban street patterns



Cardillo, Scellato, Latora, Porta, Phys. Rev. E 73, 066107 (2006)

Classification of cities



Crucitti, Latora, Porta, Phys. Rev. E 73, 036125 (2006), and 
Chaos 16, 015113 (2006) 

Centrality 
measures:  

the hot spots 
of a city 





Porta et al., Env. Plann. B 36, 450-465 (2009) 

Correlations with human activities



Porta et al., Env. Plann. B 36, 450-465 (2009) 

Pass to action !

Central spine Ring

Parma Uni Campus



Nodes = Crossings

Arcs = Streets

Arcs weights:

tij = time spent in
order to go from
node i to node j

Dynamics: cascading failures 



If today Piazza
Emanuele
Filiberto is closed
to traffic…

Load 
redistribution

People have to
find an alternative
path.



Load redistribution
can cause traffic
in alternative
routes.

Overload

Traffic hold up

Degradation 
in efficiency
(times tij grow 

longer)



New choice of
alternative routes

New 
overload

New 
degradation in 

efficiency

…

Cascading 
effect



…and the result is…



Crucitti, Latora, Marchiori, Phys. Rev. E 69 (2004)045104(R) 
Kinney, Crucitti, Albert, Latora, Eur. Phys. J. B 46, 101 (2005)

A model for cascading failures

Erdos-Renyi

Scale-free



Schafer, Witthaut, Timme, Latora, Nature Comm. 9, 1975 (2018)  

Cascading failures in power grids 



Schafer, Witthaut, Timme, Latora, Nature Comm. 9, 1975 (2018)  

Power grids 
The swing equation:



``Rich’’ networks à generalised graphs

Node and links are in space and in time (spatial networks
temporal networks)

Node and links can be of different types (multiplex, 
interconnected networks

The basic units are not only nodes and links (hypergraphs, 
simplicial complexes)

Simplicial models of social contagion,  
Iacopini, Petri, Barrat, Latora 
Nature Communications 10, 2485 (2019)    
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TimeG1 G2 G3 G4 G5 G6 G7

Temporal networks

Holme and Saramaki, Phys. Rep. 519, 97 (2012)

Temporal networks, Eds Holme and Saramaki, 
Springer 2013



One school day: contacts over time 
in a French primary school 

Stehle et al. PLoS ONE 6, e23176 (2011) 

-- 10 classes

-- 232 children, 
10 teachers

-- face-to-face contacts. 
Radio frequency 
proximity-sensing 
(<1.5 m every 20 sec)





A B 

C D 

E F 

A B 

C D 

E F 

Weighted
aggregated

We miss time order and 
correlations between links 

New temporal metrics !!

A B 

C D 

E F 

A B 

C D 

E F 

A B 

C D 

E F 

A B 

C D 

E F 

A B 

C D 

E F 

A B 

C D 

E F 

A B 

C D 

E F 

TimeG1 G2 G3 G4 G5 G6 G7

Aggregated

How to characterize the entire sequence Gt as a whole? 

Time

Graph
metric

Temporal networks



Non-Markovian temporal networks 

Williams, Lillo, Latora, New J. Phys. 21 (2019) 043028 

DAR(p) process



Non-Markovian temporal networks 

Williams, Lillo, Latora, New J. Phys. 21 (2019) 043028 



The growth of a nervous system

Nicosia, Vertes, Schafer, Latora, Bullmore, Proc. Natl. Acad. Sci. 110, 7880 (2013)



Phase transition in the network growth 

Nicosia, Vertes, Schafer, Latora, Bullmore, Proc. Natl. Acad. Sci. 110, 7880 (2013)



Modeling the temporal phase transition

Nicosia, Vertes, Schafer, Latora, Bullmore, Proc. Natl. Acad. Sci. 110, 7880 (2013)



The   ESTG model

Nicosia, Vertes, Schafer, Latora, Bullmore, Proc. Natl. Acad. Sci. 110, 7880 (2013)



The   ESTG model



Interconnected networks

Electric power grid

Communication 
systems, e.g Internet

Buldyrev et al, Nature 2010



Interconnected networks

Buldyrev et al, Nature 2010



Interconnected networks



Multiplex networks

M=3 layers



Multiplex networks

M=3 layers



Simplicial complexes

Iacopini, Petri, Barrat, Latora, arXiv:1810.07031, Nat. Comm.  



``Rich’’ networks à generalised graphs

Node and links are in space and in time (spatial networks
temporal networks)

Node and links can be of different types (multiplex, 
interconnected networks

The basic units are not only nodes and links (hypergraphs, 
simplicial complexes)

Simplicial models of social contagion,  
Iacopini, Petri, Barrat, Latora 
Nature Communications 10, 2485 (2019)    



Less and more ``exotic’’ applications

Brain, innovation ecosystems, finance, 
urban systems. 

History, anthropology, archeology, arts.



``Exotic’’ network applications

Anthropology
UCL



``Exotic’’ network applications

Iacopini, Milojevic, Latora,
Phys. Rev. Lett. 120, 048301 
(2018) 

Network Dynamics of 
Innovation Processes 


