Search for nuclear response to isospin probes and their connection to double-beta decay

Selected Topics in Nuclear and Atomic Physics 2019
30 September 2019-4 October 2019
Fiera di Primiero (TN)

Double charge exchange reactions (DCE)

A Double Charge Exchange (DCE) reaction is a process induced by a projectile on a target

Two protons (neutrons) of the target are converted in two neutrons (protons), being the mass number A unchanged. The opposite transition occurs in the projectile

In the isospin representation, DCE reactions probe the double isovector excitations generated by combination of the isospin rising and lowering operators $\tau_{x}{ }^{ \pm} \tau_{x}{ }^{ \pm} \tau_{x}{ }^{\top} \tau_{x}{ }^{\top}$ acting on two nucleons in the projectile and the target

Why to study DCE?

- Population of exotic nuclei from stable target and projectile
- Study of the response of nuclei to double isospin operator
- Possible connection with second order weak processes

Difficulties from experimental and theoretical side

${ }^{76} \mathrm{Br}$	${ }^{77} \mathrm{Br}$	${ }^{78} \mathrm{Br}$	${ }^{79} \mathrm{Br}$	${ }^{80} \mathrm{Br}$
${ }^{75} \mathrm{Se}$	${ }^{76} \mathrm{Se}$	${ }^{77} \mathrm{Se}$	${ }^{78} \mathrm{Se}$	${ }^{79} \mathrm{Se}$
${ }^{74} \mathrm{As}$	${ }^{75} \mathrm{As}$	${ }^{76} \mathrm{As}$	${ }^{77} \mathrm{As}$	${ }^{78} \mathrm{As}$
${ }^{73} \mathrm{Ge}$	${ }^{74} \mathrm{Ge}$	${ }^{75} \mathrm{Ge}$	${ }^{76} \mathrm{Ge}$	${ }^{77} \mathrm{Ge}$
${ }^{72} \mathrm{Ga}$	${ }^{73} \mathrm{Ga}$	${ }^{74} \mathrm{Ga}$	${ }^{75} \mathrm{Ga}$	${ }^{76} \mathrm{Ga}$

Outline

- Past Double Charge Exchange exploration: achievements and limitations
- The interest for double beta decay and the idea of NUMEN
- The experimental apparatus
- The NUMEN pilot experiment
- The first results on the systems of interest for $0 v \beta \beta$

Past Double Charge Exchange exploration: achievements and limitations

Pion-induced double charge exchange

$\left(\pi^{+}, \pi^{-}\right)$or (π^{-}, π^{+}) cause a change of two units of charge in a nucleus

Experiments at Los Alamos Meson Physics Facility (LAMPF) in the 80's

Double Isovector Giant Dipole Resonance (GDR) ${ }^{2} \quad \mathrm{~J}^{\pi}=0^{+}, 2^{+} ; T=2$
Double Isobaric Analog State (DIAS)
Combination of them (GDR-IAS) $\quad \frac{0+2^{+}(\text {GDR })^{2}}{T=2} \sim-50.0$

S. Mordechai, C.F. Moore, Nature 352 (1991) 393

S. Mordechai et al., PRL 60 (1988)408

Pion-induced double charge exchange

$(G D R)^{2}$ observed also in the inverse reaction ($\Delta \mathrm{Tz}=+2$) on the same target nucleus

Pion-induced double charge exchange

S. Mordechai et al., PRL 61 (1988)531

Systematic observation on a wide range of nuclei

S.Mordechai et al., PRC 43 (1991) 1509

- $\mathrm{Q}(\mathrm{MeV})$
S. Mordechai et al., PRC 43 (1991) 1111

Pion-induced double charge exchange

Interest in double giant resonances

BUT pions are spinless probe
Not ideal to populate Double GT (DGT)

Scarce experimental information about g.s. to g.s. transitions low cross sections (nb/sr)
D.L. Watson et al., PRC 43 (1991) 43

Δ-nucleon interaction: mechanism responsible for gs to gs non-analog transition

Pion-induced double charge exchange

Δ-nucleon interaction

M.B. Johnson et al., Phys. Rev. Lett. 52 (1984) 593
M.B. Johnson, C.L. Morris, Ann. Rev. Nucl. Part. Sci. 43 (1993) 165

Formation and decay of intermediate Δ resonances
(which plays the role of converter of hadronic charge)

Absorption of the incoming π^{+}on a neutron into a Δ^{+}which decays into a proton and a virtual neutral meson (π^{0}, ρ^{0}) which rescatters on a neutron into a Δ^{0}, which decays into a π^{-}and a second proton

Effective rank-2 isotensor interaction:

$$
V^{(2)} \sim\left[\vec{\phi}_{\pi} \otimes \vec{\phi}_{\pi}\right]_{2} \cdot\left[\boldsymbol{\tau}_{i} \otimes \boldsymbol{\tau}_{j}\right]_{2}
$$

Pion isovector fields
Nucleon isovector operators

Important role of nuclear structure in the description of $\left(\pi^{+}, \pi^{-}\right)$ \rightarrow Nucleon-nucleon correlations
N. Auerbach et al., PRL 59 (1987) 1076
N. Auerbach et al., PRC 38 (1988) 1277

From Pion to Heavy-Ion induced Double Charge Exchange

H. Lenske et al. Progr. Part. and Nucl. Physics 109 (2019) 103716

These kinds of interactions are not specific for pion-induced DCE but can occur in similar form also in other hadronic reactions

Introduction of projectile (at least two nucleons involved for isospin flip) Systems which support rank-2 isotensor processes

The pion field is virtual, being exchanged between projectile and target
e.g. in a reaction where in the target $n n->p p(\Delta Z=+2)$, the projectile acts as a source for the π^{+}field and sink for the π^{-}field.

The lightest projectiles allowed are t or ${ }^{3} \mathrm{He}\left[(\mathrm{t}, 3 \mathrm{p})\right.$ or the $\left({ }^{3} \mathrm{He}, 3 \mathrm{n}\right)$ reactions are very challenging from the experimental point of view]

If final ejectile particle-stable \rightarrow heavy-ion DCE (HI-DCE) reactions (with ${ }^{12}$ C or heavier projectiles)

Past HI-DCE experiments

Main purposes:

-Populate nuclei far from stability
-Mass measurements by reaction Q-value measurements -Search for DGT

Not conclusive for spectroscopic investigations due to poor statistical significance
J. Cerny, et al., Proc. 3° Int. Conf. on Nuclei Far from Stability, Cargese, 1976
${ }^{24} \mathrm{Mg}\left({ }^{18} \mathrm{O},{ }^{18} \mathrm{Ne}\right){ }^{24} \mathrm{Ne} @ 124 \mathrm{MeV}$

J.Blomgren, et al., Phys. Lett. B 362 (1995) 34

Past HI-DCE experiments

Barely above barrier $11 \mathrm{deg}<\theta_{\mathrm{cm}}<28 \mathrm{deg}$

Energy spectrum missing!

Interest in the study of the pair transfer modes
Spectroscopic tools to populate $2 p-2 h$ states (2-phonon states)
D.M. Drake et al., PRL 45 (1980) 1765

Past HI-DCE experiments

The $\left({ }^{14} \mathrm{C},{ }^{14} \mathrm{O}\right)$ reaction

- Simultaneus pair-exchange (exchange of a di-neutron and a di-proton) or
- Exhange of two units of charge between target and projectile

D.R.Bes et al., NPA 405 (1983) 313

The interest for double beta decay and the idea of NUMEN

Recent HI-DCE experiments: connection with $0 v \beta \beta$ decay

\checkmark Process mediated by the weak interaction
\checkmark Observable in even-even nuclei where the single β-decay is energetically forbidden

Nuclear Matrix Elements

A new experimental tool

Nuclear reactions
Heavy-Ion induced Double Charge Exchange reactions (DCE) to stimulate in the laboratory the same nuclear transition (g.s. to g.s.) occurring in $0 v \beta \beta$

$0 v \beta \beta$ vs DCE

Differences

- DCE mediated by strong interaction, $0 \vee \beta \beta$ by weak interaction
- Decay vs reaction dynamics
- DCE includes sequential transfer mechanism
- Projectile and target contributions in the NME

Similarities

- Same initial and final states: Parent/daughter states of the $0 \nu \beta \beta$ decay are the same as those of the target/residual nuclei in the DCE
- Similar operator: Short-range Fermi, Gamow-Teller and rank-2 tensor components are present in both the transition operators, with tunable weight in DCE
- Large linear momentum ($\sim 100 \mathrm{MeV} / \mathrm{c}$) available in the virtual intermediate channel
- Non-local processes: characterized by two vertices localized in a pair of nucleons
- Same nuclear medium
- Off-shell propagation through virtual intermediate channels

The Goals of the Research Program

Extraction from measured cross-sections of "data-driven" information on NME for all the systems candidate for $0 v \beta \beta$

Mid term goals:

- Constraints to the existing theories of NMEs (nuclear wave functions)
- Model-independent comparative information on the sensitivity of half-life experiments
- Complete study of the reaction mechanism

Double β-decay

Two-neutrino double beta decay

M. Goeppert-Mayer, Phys Rev. 48 (1935) 512

Observed in 11 isotopes since 1987

Ordinary 2° order β decay

Neutrinoless double beta decay

$$
\begin{aligned}
& { }_{Z}^{A} X_{N} \rightarrow{ }_{Z+}{ }_{2}^{A} Y_{N-2}+2 e^{-}+(2 \bar{v}) \\
& { }_{Z}^{A} X_{N} \rightarrow{ }_{Z-2}^{A} Y_{N+2}+2 e^{+}+(2 v)
\end{aligned}
$$

E. Majorana, II Nuovo Cimento 14 (1937) 171 W. H. Furry, Phys Rev. 56 (1939) 1184

Still not observed

Beyond standard model

$2 v \beta \beta$ - decay

q-available like ordinary $\boldsymbol{\beta}$-decay

$$
\left(\mathbf{q} \sim 0.01 \mathrm{fm}^{-1} \sim 2 \mathrm{MeV} / \mathrm{c}\right)
$$

only allowed decays are possible $(\mathrm{L}=0)$

Methodology:
Single CEX to populate intermediate states

H. Ejiri Progr. Part. Nucl. Phys. 64 (2010) 249257
$2 v \beta \beta$ - decay

$$
M^{2 v}=\sum_{m} \frac{\left(0_{f}^{+}\left|\sigma \tau^{-}\right| m\right)\left(m\left|\sigma \tau^{+}\right| 0_{i}^{+}\right\rangle}{E_{m}-\left(M_{i}+M_{f}\right) / 2}
$$

However
from CEX cross-sections -> transition probabilities are extracted
transition amplitudes are required, so phases are necessary
-> Single State Dominance (SSD) approximation
OR all positive signs in the coherent sum of the amplitudes
H.Ejiri, J.Suhonen, K.Zuber, Phys. Rep. 797 (2019) 1-102

$$
{ }^{116} \mathbf{C d} \underset{\substack{(3 \mathrm{He}, t) \\ \mathrm{B}\left(\mathrm{GT}^{-}\right)}}{\stackrel{\mathrm{EC}}{\leftrightarrows}} 116 \ln \underset{\substack{\left(d,{ }^{2} \mathrm{He}^{+}\right) \\ \mathrm{B}\left(\mathrm{GT}^{+}\right)}}{\stackrel{\beta^{-}}{\leftrightarrows}} 116 \mathrm{Sn}
$$

$0 v \beta \beta$ - decay

neutrino enters as virtual particle, $\mathbf{q} \sim \mathbf{0 . 5 f m}^{-1}(\sim 100 \mathrm{MeV} / \mathrm{c})$
forbiddeness weakened $L=0,1,2 \ldots$

Closure approximation

High multipolarities not accessible through single CEX reactions

The experiments ai INFN-LNS

The experiments

erc NuTE

- Transitions of interest for $0 v \beta \beta$:

Limited number of targets in phase 2 , systematic exploration of all the targets in phase 4

- Two directions:
$\beta \beta^{-}$via $\left({ }^{20} \mathrm{Ne},{ }^{20} \mathrm{O}\right)$ and $\beta \beta^{+}$via $\left({ }^{18} \mathrm{O},{ }^{18} \mathrm{Ne}\right)$
- Complete net of reactions which can contribute to the DCE cross-section:
1p-, 2p-, 1n-, 2n-transfer, SCE, (elastic)
- Two (or more) incident energies
 to study the reaction mechanism

The LNS laboratory in Catania

Superconducting cyclotron K800
 INFN
 LNS

- Accelerating ion beams from proton to Uranium at energy up to 80 AMeV
- Superconducting magnets with Niobium-Titanium coils in liquid Helium at 4.2 K

MAGNEX: a large acceptance QD spectrometer

* The Quadrupole: vertically focusing
(Aperture radius 20 cm , effective length 58 cm . Maximum field strength $5 \mathrm{~T} / \mathrm{m}$)
* The Dipole: momentum dispersion (and horizontal focus)
(Mean bend angle 55°, radius 1.60 m . Maximum field ~ 1.15 T)

MAGNEX characteristics

Measured resolution: Energy $\Delta \mathrm{E} / \mathrm{E} \sim 1 / 1000$ Angle $\Delta \theta \sim 0.3^{\circ}$ Mass $\Delta \mathrm{m} / \mathrm{m} \sim 1 / 160$

We have measured in a wide mass range (from protons to medium-mass nuclei)

Optical characteristics	Measured values
Angular acceptance (Solid angle)	50 msr
Angular range	$-\mathbf{- 2 0 ^ { \circ }} \boldsymbol{- + 8 5 ^ { \circ }}$
Momentum (energy) acceptance	$-14 \%,+10 \%(-28 \%,+20 \%)$
Momentum dispersion for k=-0.104 (cm/\%)	3.68
Maximum magnetic rigidity	1.8 T m

F. Cappuzzello et al., Eur. Phys. Journ. A (2016) 52:167

Needs to go to large acceptance to study rare processes

The large acceptance problem

Large acceptance

Aberrations

$$
x_{i}(f)=\sum_{j} R_{i j} x_{j}(i)+\sum_{j, k} T_{i k} x_{j}(i) x_{k}(i)+\ldots . . \quad \text { Up to } 10^{\circ} \text { order }
$$

Careful hardware design
(to minimize the aberrations)

Software ray-reconstruction
(to know the aberrations)

Hardware minimisation of aberrations

- Rotation of the focal plane detector of 59°
- Shift of the focal plane detector
- Introduction of surface coils located between the dipole pole faces and the inner high vacuum chamber, giving tunable quadrupolar and sextupolar corrections
- Shaping of dipole entrance and exit boundaries ($8^{\text {th }}$ order polynomial)

Software ray-reconstruction

ALGEBRIC RAYRECONSTRUCTION

\checkmark Solution of the equation of motion for each detected particle
\checkmark Inversion of the transport matrix
\checkmark Application to the final measured parameters

1) Detailed knowledge of the magnetic field

Measurement of the field (3D map)

Interpolation of the field

Regular function up to 10° order

A.Lazzaro et al., NIMA 570 (2007) 192
A.Lazzaro et al., NIMA 585 (2008) 136
A.Lazzaro et al., NIMA 591 (2008) 394 A.Lazzaro et al., NIMA 602 (2009) 494

Measurements at Danfysik 240000 points 2 months (night and day)

Software ray-reconstruction

\checkmark Solution of the equation of motion for each

ALGEBRIC RAYRECONSTRUCTION

 detected particle\checkmark Inversion of the transport matrix
\checkmark Application to the final measured parameters

Inversion of the transport matrix

1) Detailed knowledge of the geometry and magnetic field

2) High resolution measurement at the focal plane (highly performing detectors)

2) MAGNEX Focal Plane Detector

Two tasks to accomplish:

1) High resolution measurement at the focal plane of the phase space parameters ($\mathrm{Xfoc}^{\prime}, \mathrm{Y}_{\mathrm{foc}}, \theta_{\mathrm{foc}}, \phi_{\mathrm{foc}}$)
2) Identification of the reaction ejectiles (Z, A) - crucial aspect for heavy ions

Hybrid detector:
Gas section: proportional wires and drift chambers
Stopping wall of silicon detectors

FPD characteristics

Horizontal and vertical position resolution (FWHM)	0.6 mm
Horizontal and vertical angular resolution (FWHM)	0.3°
Mass resolution ${ }^{(\mathrm{a})}$	0.6%
Explored ion mass range	from $A=1$ to $A=48$
Energy loss resolution ${ }^{\text {(b) }}$	6.3%
Maximum incident ion rate (uniform distribution)	5 kHz
Maximum incident ion rate (localized in $\sim 1 \mathrm{~cm})$	2 kHz
百	

For O at 300 MeV $10^{4} \mathrm{~Hz} / \mathrm{mm}^{2}$

Software ray-reconstruction

ALGEBRIC RAYRECONSTRUCTION

\checkmark Solution of the equation of motion for each detected particle
\checkmark Inversion of the transport matrix
\checkmark Application to the final measured parameters

1) Detailed knowledge of the geometry and magnetic field

Inversion of the transport matrix
3) Algorithm to transport and invert
2) High resolution measurement at the focal plane (highly performing detectors)

3) Algorithm to transport and invert

F. Cappuzzello, et al., NIM A 638, (2011) 74

3) Algorithm to transport and invert

Examples of parameters at the focal plane
Black: measured parameters
Red: Simulated parameters

3) Algorithm to transport and invert

F. Cappuzzello, et al., NIM A 638, (2011) 74

3) Algorithm to transport and invert

Typical energy spectra and angular distributions

Particle Identification

$$
{ }^{40} \mathrm{Ca}\left({ }^{18} \mathrm{O},{ }^{18} \mathrm{Ne}\right)^{40} \mathrm{Ar} @ 270 \mathrm{MeV}
$$

Cross-section measurement at zero-degrees

Measurement of the beam current at Faraday Cup

M. Cavallaro et al., NIMB (2019) in press

The NUMEN pilot experiment

The pilot experiment

${ }^{40} \mathrm{Ca}\left({ }^{18} \mathrm{O},{ }^{18} \mathrm{Ne}\right){ }^{40} \mathrm{Ar}$ at 270 MeV

Projectile

${ }^{18} \mathrm{O}$ and ${ }^{18} \mathrm{Ne}$ belong to the same multiplet in S and T
Super-allowed transition GT strength not fragmented

GT strength not much fragmented

The pilot experiment

${ }^{18} \mathrm{O}+{ }^{40} \mathrm{Ca}$ at 270 MeV
F. Cappuzzello, et al., Eur. Phys. J. A (2015) 51:145

Experimental feasibility: zero-deg, resolution (500 keV), low cross-section ($\mu \mathrm{b} / \mathrm{sr}$)

```
Limitations of the past HI-DCE
```

experiments are overcome!

The pilot experiment: comparison with litterature

$$
\begin{aligned}
& { }^{40} \mathrm{Ca}\left({ }^{14} \mathrm{C},{ }_{1}^{14} \mathrm{O}\right){ }^{40} \mathrm{Ar}_{\mathrm{gs}} \\
& \mathrm{E}\left({ }^{14} \mathrm{C}\right)=51 \mathrm{MeV}
\end{aligned}
$$

D.M. Drake et al., PRL 45 (1980) 1765

The pilot experiment: comparison with litterature

${ }^{40} \mathrm{Ca}$	${ }^{41} \mathrm{Ca}$	${ }^{42} \mathrm{Ca}$
${ }^{38} \mathrm{Ar}$	${ }^{39} \mathrm{Ar}$	${ }^{40} \mathrm{Ar}$

The role of the competing processes

1 order of magnitude lower than DCE

Good energy matching of the sequential pick-up and stripping process
D.M. Drake et al., PRL 45 (1980) 1765

The pilot experiment

The role of the competing processes

First model-independent conclusions:
Competing transfer channels (involving same target and projectile) are much smaller than DCE

Heavy-Ion induced Double Charge Exchange Heavy ion DCE can proceed in principle:

- Sequential multi-nucleon transfer
- Collisional processes
- Double single charge exchange (DSCE): two consecutive single charge exchange processes
-Two-nucleon mechanism (MDCE): relying on short range NN correlations, leading to the correlated exchange of two charged mesons between projectile and target.

Cross section is a combination of the three different kinds of reaction dynamics

1. Multi-nucleon transfer (proton pick-up/stripping followed by neutron stripping/pick-up)

\checkmark Probing at least twice nucleus-nucleus Initial (ISI) and Final (FSI)
State interaction (at least 2° order)
\checkmark mean field driven
\checkmark Single-nucleon transfer of 4° order
\checkmark Sequential transfer of $\mathbf{2 p / 2 n}$ pairs is of $\mathbf{2}^{\circ}$ order
\checkmark Transfer or $\mathbf{2 p} / 2 n$ pairs followed by $\mathbf{2 n} / 2 p$ pairs could be of interest for $0 \cup \beta \beta$ NME
B.A.Brown et al. PRL 113, 262501 (2014)

Expansion of NME in terms of summation over states of the (A-2) nucleus.

Role of pairing

2. Double Single Charge Exchange (DSCE)

The existence of pion-induced DCE proves that there is a reaction mechanism (other that sequential transfer) mediated by an interaction of more direct character
\checkmark Two-step process (two consecutive SCE occur in an uncorrelated manner), no correlation between vertices
\checkmark Probing twice nucleus nucleus Initial (ISI) and Final (FSI) State Interaction

DSCE reaction amplitude

$$
\begin{aligned}
& M_{\alpha \beta}^{(D S C E)}=\left\langle\chi_{\beta}^{(-)} b B\right| T_{N N} \mathcal{G} T_{N N}\left|a A \chi_{\alpha}^{(+)}\right\rangle \\
& \mathcal{G}=\sum_{c C}|c C\rangle G_{c C}\langle c C|
\end{aligned}
$$

Effects of SSD and closure studied

2. Double Single Charge Exchange (DSCE)

\checkmark Analogies with $2 v \beta \beta$ decay which is a sequential decay process where the leptons are emitted subsequently in an uncorrelated manner
\checkmark but sum over products of projectile and target NME's
\checkmark The transition operator will be dependent on the projectile/target combination and on incident energy. These dependencies may be taken advantage of, in principle, for selecting suitable conditions such that the DSCE amplitudes are either suppressed or enhanced.

3. Correlated Double Charge Exchange ('Majorana’ mechanism MDCE)

Independent on the projectile/target combination because rely on nucleonic short-range correlations (universal phenomena of nuclear matter)
\checkmark Probing once nucleus nucleus Initial (ISI) and Final (FSI) State Interaction
\checkmark Correspondence with $0 \vee \beta \beta$?
H. Lenske et al. Progr. Part. and Nucl. Physics 109 (2019) 103716
H. Lenske, CERN Proceedings 2019-001 (2019)

The "Majorana" hadron mechanism for HI-DCE

Elementary weak interaction process mediating $0 v \beta \beta$

Special class of two-body correlation

- emission of virtual weak gauge boson $\mathrm{W} \pm$,
- exchange of a Majorana neutrino between two nucleons
- and emission of electrons

Can occur, in principle, in an isolated nucleus

From H. Lenske, CERN Proceedings 2019-001 (2019)

Similar diagrammatic structure

Elementary strong interaction process mediating 1-step DCE

The $p p \rightarrow n n \pi^{+} \pi^{+}$reaction and other double-pion production channels have been investigated at CELSIUS, COSY, HADES

Also two-body correlation

- emission of virtual $q \bar{q}\left(\pi^{-}, \rho^{-}\right)$
- exchange of a virtual charge-neutral $q \bar{q}$ pair $\left(\pi^{0}, \rho^{0}, \sigma\right)$
- and emission of charged $q \bar{q}$

Inhibited by energy conservation, it requires a reaction partner which take care of the virtuality of the process by absorbing the two charged virtual mesons

The "Majorana" hadron mechanism for HI-DCE

Diagrammatic structure

The target undergoes a correlated double meson pair decay and the projectile absorbs the pions

Correlation between nucleons

Universal because of generic Short Range
Correlation NN dynamics

The nucleons emit the charged mesons independetly and the mesons correlate

Universal because of generic meson dynamics

The "Majorana" mechanism for HI-DCE

H. Lenske, CERN Proceedings 2019-001 (2019) [49]
\checkmark ISI and FSI ion-ion interaction from double folding (available new elastic and inelastic data)
\checkmark QRPA transition densities for microscopic form factors
\checkmark One-step DWBA for the MDCE amplitudes and two-step DWBA for DSCE

\checkmark Only $\mathrm{N} \pi$-correlations included
\checkmark Off-shell momentum structure approximated with on-shell component (T-matrix instead of G-matrix)

Scaling factor

Encouraging results, but still room for improvements

Review

Heavy ion charge exchange reactions as probes for nuclear β-decay

Horst Lenske ${ }^{\text {a,d,* }}$, Francesco Cappuzzello ${ }^{\text {b,c,d }}$, Manuela Cavallaro ${ }^{\text {b,d }}$, Maria Colonna ${ }^{\text {b,d }}$
${ }^{\text {a }}$ Institut fur Theoretische Physik, JLU Gießen, Gießen, Germany
${ }^{\text {b }}$ Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Catania, Italy
${ }^{\text {c }}$ Dipartimento di Fisica e Astronomia 'E. Majorana", Università di Catania, Catania, Italy
${ }^{\text {d }}$ The NUMEN Collaboration, LNS Catania, Catania, Italy

The systems of interest for $0 v \beta \beta$

NUMEN runs - Phase 2

${ }^{116} \mathrm{Cd}-{ }^{116} \mathrm{~S}$ n case	${ }^{76} \mathrm{Ge}-{ }^{76} \mathrm{Se}$ case	${ }^{130} \mathrm{Te}-{ }^{130} \mathrm{Xe}$ case	${ }^{48} \mathrm{Ti}-{ }^{48} \mathrm{Ca}$ case
$@ 15 \mathrm{MeV} / \mathrm{A}$		$@ 15 \mathrm{MeV} / \mathrm{A}$	$@ 15 \mathrm{MeV} / \mathrm{A}$
$>{ }^{18} \mathrm{O}+{ }^{116} \mathrm{Sn}$	$@ 15 \mathrm{MeV} / \mathrm{A}$	$>{ }^{20} \mathrm{Ne}+{ }^{130} \mathrm{Te}$	$>{ }^{18} \mathrm{O}+{ }^{48} \mathrm{Ti}$
$>{ }^{20} \mathrm{Ne}+{ }^{116} \mathrm{Cd}$	$>{ }^{20} \mathrm{Ne}+{ }^{76} \mathrm{Ge}$		

Experimental results

DCE reaction ${ }^{116} \mathrm{Cd}\left({ }^{20} \mathrm{Ne},{ }^{20} \mathrm{O}\right){ }^{116} \mathrm{Sn}$

- g.s. \rightarrow g.s. transition isolated (FWHM 800keV)
- Absolute cross section measured
- Angular distribution
- 0 deg $<\theta_{c m}<14$ deg

Experimental results
 DCE reaction ${ }^{116} \mathrm{Cd}\left({ }^{20} \mathrm{Ne},{ }^{20} \mathrm{O}\right){ }^{116} \mathrm{Sn}$

Analysis of cross-section sensitivity <0.2 nb in the Region Of Interest

Multi-nucleon transfer

Cross section calculations (DWBA)
ISI and FSI from double folding SA from IBM, shell model, QRPA

Multi-nucleon transfer routes

J. Lubian, J.Ferreira et al.,

VS
Diagonal process
(exp. cross section $12 \pm \mathbf{2 n b}$)

${ }^{116} \mathrm{Sn}$	${ }^{117} \mathrm{Sn}$	${ }^{118} \mathrm{Sn}$
${ }^{115} \mathrm{In}$	${ }^{116} \mathrm{In}$	${ }^{117} \mathrm{In}$
${ }^{114} \mathrm{Cd}$	${ }^{115} \mathrm{Cd}$	${ }^{116} \mathrm{Cd}$

Multi-nucleon transfer routes

J. Lubian, J.Ferreira et al.

vS

Diagonal process
(exp. cross section $\mathbf{1 2} \pm \mathbf{2 n b}$)

$9.4 \times 10^{-8} \mathrm{nb}$

$1.5 \times 10^{-6} \mathrm{nb}$

$3.2 \times 10^{-7} \mathrm{nb}$

$1.1 \times 10^{-7} \mathrm{nb}$

Negligible contribution of multi-nucleon transfer on the diagonal DCE process

Interplay between CEX + multi-nucleon transfer (Work in progress)

Experimental results

DCE reaction ${ }^{130} \mathrm{Te}\left({ }^{20} \mathrm{Ne},{ }^{20} \mathrm{O}\right){ }^{130} \mathrm{Xe}$

- g.s. \rightarrow g.s. transition maybe isolated
- Absolute cross section measured

Resolution ~ 500 keV FWHM

No spurious counts in the region -10 $<\mathrm{E}_{\mathrm{x}}<-2 \mathrm{MeV}$

Experimental results

DCE ${ }^{76} \mathrm{Ge}\left({ }^{20} \mathrm{Ne},{ }^{20} \mathrm{O}\right){ }^{76} \mathrm{Se}$ @ 15 AMeV

Still very preliminary!
About 50 counts in the ${ }^{76}$ Se ground state region

Experimental results

Elastic and inelastic scattering ${ }^{76} \mathrm{Ge}\left({ }^{20} \mathrm{Ne},{ }^{20} \mathrm{Ne}\right){ }^{76} \mathrm{Ge} @ 15 \mathrm{AMeV}$

A. Spatafora et al., Phys. Rev. C 100 (2019) 034620

Outline

- Past Double Charge Exchange exploration: achievements and limitations
- The interest for double beta decay and the idea of NUMEN
- The experimental apparatus
- The NUMEN pilot experiment
- The first results on the systems of interest for $0 v \beta \beta$

