

PARIS campaign(s) @ ALTO

Jonathan Wilson, IPN Orsay

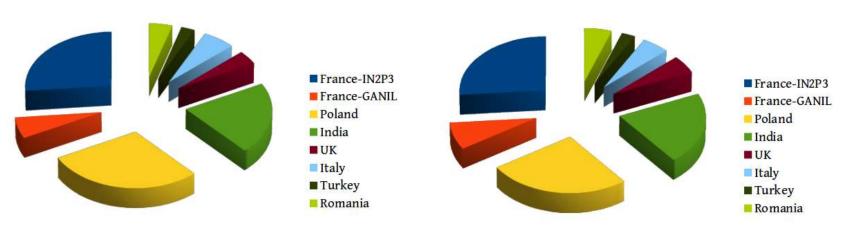
R&D on detector choice:

ANR PROVA (joint contribution of IN2P3 and GANIL)

 \rightarrow triggered the phoswich choice for PARIS MOU Demonstrator Parties Funds Participation

IN2P3 in PARIS Collaboratio

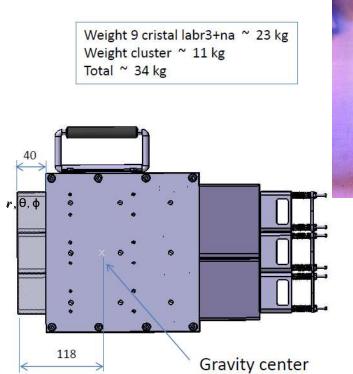
PARIS detectors between members


Two Institutes from France:

IN2P3 (IPN Orsay, IPN Lyon, IPHC Strasbourg)

GANIL

33 phoswichs (~4 clusters)



IN2P3 would like to contribute for one more cluster for the period 2018 - 20

PARIS Mechanic:

Design and Construction of Cluster Mechanics :

t national de physique nucléaire physique des particules

ORSAY

ALTO

- hold 4 PARIS clusters around 90°
- possible variations^{θ,θ}, h (

- compatibility with mechanics like: AGATA, BEDO/ALTO ...
- start the design ~ first trimester of 2018

PAC-ALTO accepted experiments

er de physiq	ue des particul	65		FAC-ALIU accepteu e	Σνήζιι	
	2	M. Wiedeking	N-SI-83	Coulomb Excitation of 14C	A*	12
	3	P.J.Napiorkowski	N-SI-85	Coulomb excitation of super-deformed band in 40Ca	A	18
	4	M. Lebois	N-SI-86	Prompt gamma and neutron emission for 238U fast neutron induced fission as a function of incident neutron energy	A	21
	12	O. Kirsebom	N-SI-87	A new probe of alpha-cluster structure in 12C	A-/B	18/0
	13	E. Kozulin	N-SI-88	Prompt γ-rays as a probe of nucleardynamics	A-	9
	14	B. Blank	N-SI-82	Measurement of the super-allowed branching ratio of 10C	A*	36

PAC-ALTO accepted experiments

N-SI-107: Feeding of low-energy structures by GDR decay using coupled vball and PARIS detectors, M. Kmeicik et al., Performed with PARIS/nuball 2018

PFG studies in 237Np, A. Oberstedt et al. Accepted 2017 (may run in 2019)

PFG studies in 233U, A. Oberstedt et al. Accepted 2018 (may run in 2019)

Beta decay to PDR states around N=50, I. Matea et al., will run in 2019

Experiments proposed and accepted for the PARIS@ALTO call

Experiment	Setup/Nb of daq ch	Cave	Daq	UBT
N-SI-83 (Wiedeking) : Coulex ¹⁴ C	PARIS(18) + LuSIA(96)	420	nGO	12
N-SI-85 (PJN) : Coulex ⁴⁰ Ca	PARIS(18) + LuSIA(96) + ORGAM(15x2)	420	nGO	18
N-SI-87 (Kirsebom) : Alpha cluster ¹² C	PARIS(18)	420	nGO	18
N-SI-88 (Kozulin) : CORSET	PARIS(18) + ORGAM(15x2) + CORSET(10)	420	nGO	9
N-SI-82 (Blank) : Super allowed BR ¹⁰ C	PARIS(18) + ORGAM(15)	420	Bdx(ORGAM) + nGO(PARIS)	36
N-SI-86 (Lebois) : ²³⁸ U prompt g and n	PARIS + LICORNE	410	FASTER	21

Outcome:

- Coulex of 14-C : finaly, the spokesperson (South Africa) went to US (I think) to do the experiment

- Coulex of 40-Ca : you and Matthieu were in contact with Pawel to see if he can do the experiment with Nu-Ball (will he go for Nu-Ball 2, for exemple ?)

- Alpha Cluster in 12 C : when I contacted Kirsebom, he didn't answer ... So, for me, this is also a dead end. Maybe Sandrine will want to go and re-propose this type of experiments....

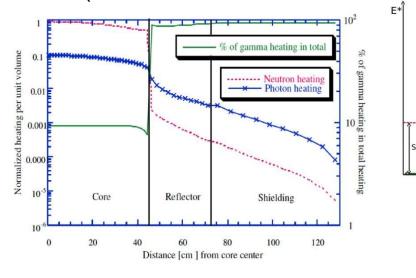
- Superallowed BR 10-C : performed, but without PARIS

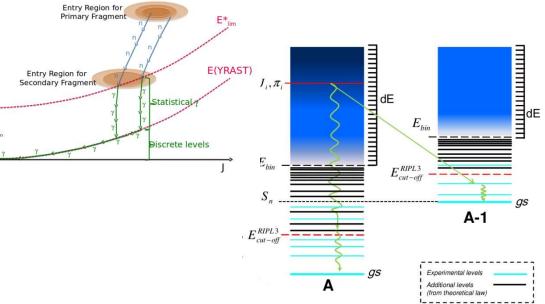
- CORSET : experiment performed with ORGAM + PARIS (1 cluster + 1 det) + CORSET (slides attached)

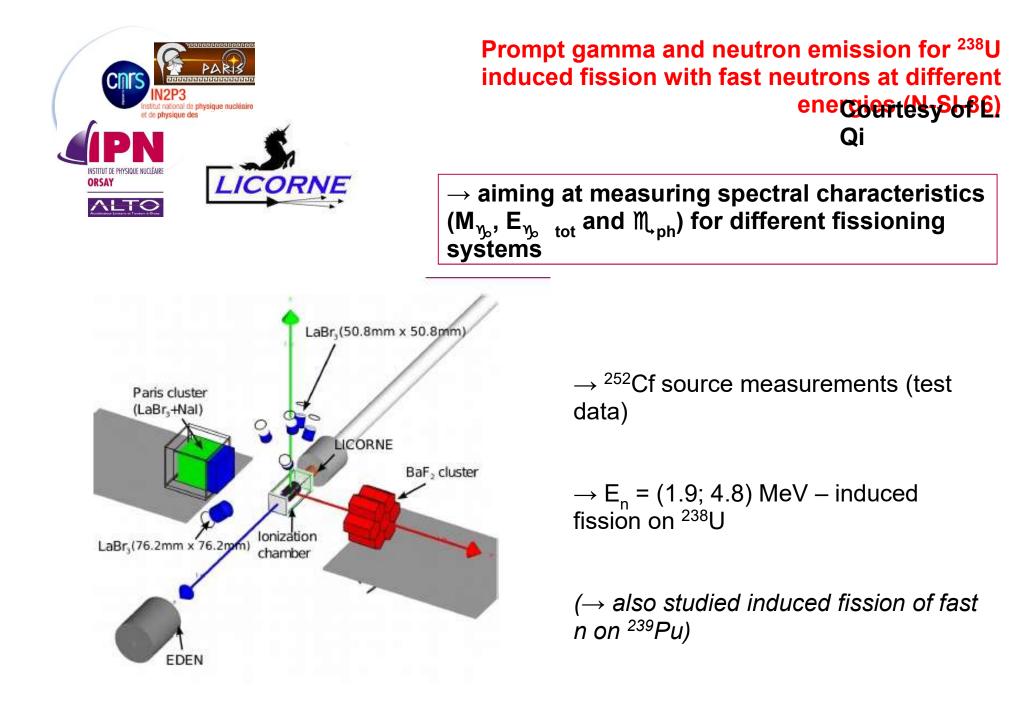
- Lebois : well, this you know better than me, it is Liquiang thesis

(I don't remember very well, but I suppose that you have used PARIS for this type of physics for 2 experiments, right ?)

Prompt gamma and neutron emission for ²³⁸U induced fission with fast neutrons at different energiest(SySoff) Qi

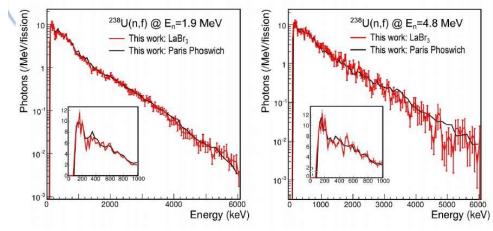

Two-fold motivation:


1. Reactor Physics


- 5% release in fission is done through PFG and γ_{0} -heating can be underestimated
- design of Gen. IV reactors: fast neutron reactors nuclear data are scarce out of

2. Fundamental Physics

- understanding the fission process, like energy partition in fission or generation of
- study of level density function, g-strength function, competition between n and γ_{o} (needed for validation of different competing codes like GEF, FREYA, CGMF, FIFR

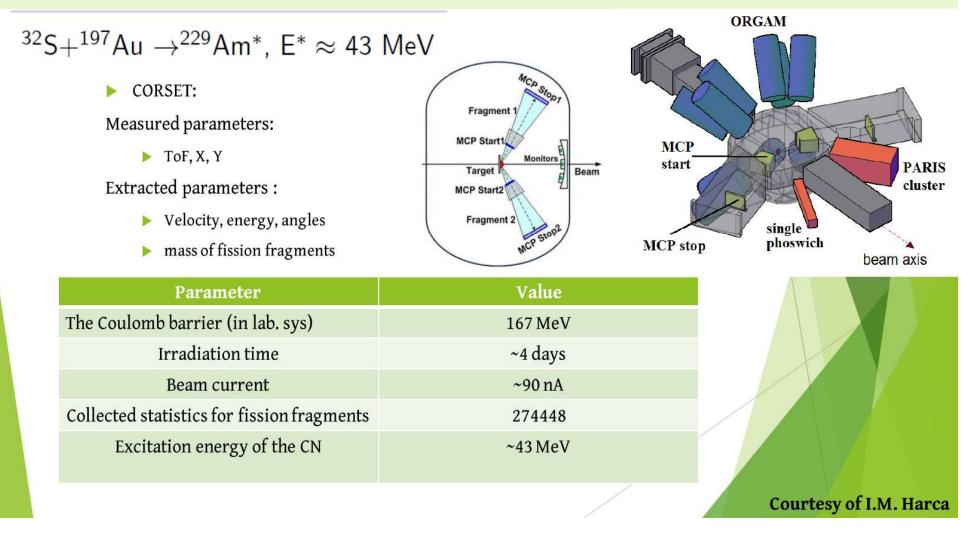


Prompt gamma and neutron emission for ²³⁸U induced fission with fast neutrons at different energiest(NySb62)

TABLE	III.	Summary	of	PFGS	characteristics	for	the
$^{238}U(n,f)$	read	ction at two	inc	ident ne	eutron energies.		

	$E_n(MeV)$	$\overline{M}_{\gamma}(/fission)$	$E_{\gamma,tot}(MeV)$	$\epsilon_{\gamma}(MeV)$
This work	1.9	$6.54{\pm}0.19$	$5.25{\pm}0.20$	0.80 ± 0.04
	4.8	$7.31 {\pm} 0.46$	$6.18{\pm}0.65$	$0.84{\pm}0.11$
J-M.Laborie	1.7	$7.05 {\pm} 0.20$	$5.92{\pm}0.24$	$0.84{\pm}0.03$
et al. [7]	5.2	$7.25{\pm}0.35$	$5.73 {\pm} 0.40$	$0.79 {\pm} 0.04$
M.Lebois	2.4	$7.62{\pm}0.25$	$5.78{\pm}0.29$	0.77 ± 0.03
et al. [8]	3.3	$10.08 {\pm} 0.14$	$7.55 {\pm} 0.15$	0.75 ± 0.01

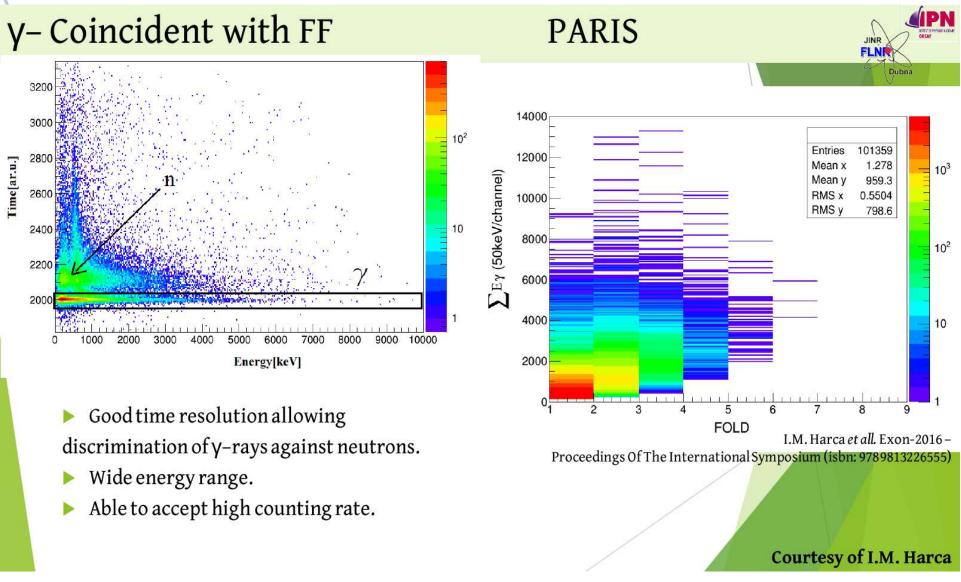
Conclusions:


 \rightarrow low energy PFGS different for different energies : change in fragment population

 \rightarrow softening of the HE part of PFGS suggests that the increased total excitation energy goes to the heavy fragments : hints on the excitation energy sharing mechanism ...

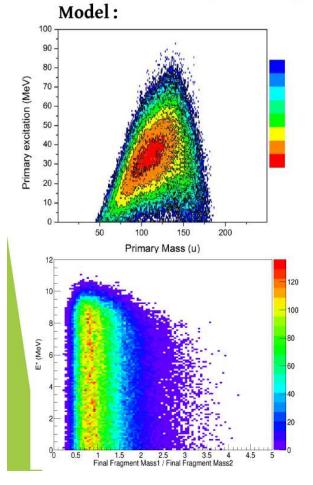
 \rightarrow spectral characteristics stay constant with increased neutron energy : extra excitation energy is mainly evacuated by prompt neutron evaporation. As a consequence, the fast reactors in Generation-IV don't need significant changes in the modeling of gamma heating transportation Statistical study of the prompt-fission γ -ray spectrum for 238U(n, f) in the fast-neutron regionL. Qi, M. Lebois, J. N. Wilson, et al. Phys. Rev. C 98, 014612 (2018)

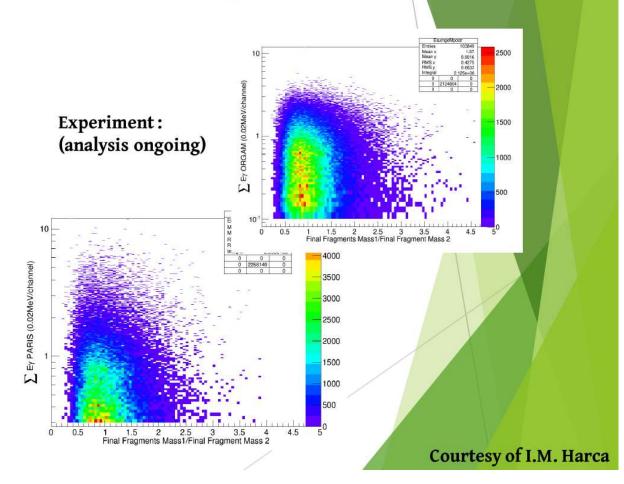
Experimental Setup: CORSET


Experimental Setup: Coincident FF - γ-rays

- ORGAM: Prompt γ-rays coincident with FF
- PARIS: Prompt γ-rays (HE part) coincident with FF.

Parameter	ORGAM	PARIS
Number and type of Detectors	10 x Ge + BGO shielding	10 x LaBr3(Ce)-NaI(Tl) (phoswich)
Photo-peak Efficiency	~1%	~1%
Energy resolution	2.6(3.4)keV @121(1408)keV	62keV @1332keV
Dynamical range	$E_{\gamma} < 2.5 MeV$	$E_{\gamma} < 15 MeV$





The excitation energy of Fission Fragments: From Primary Fragments to Final Fragments

Feeding of low-energy structures by GDR decay using coupled v-ball and PARIS detectors

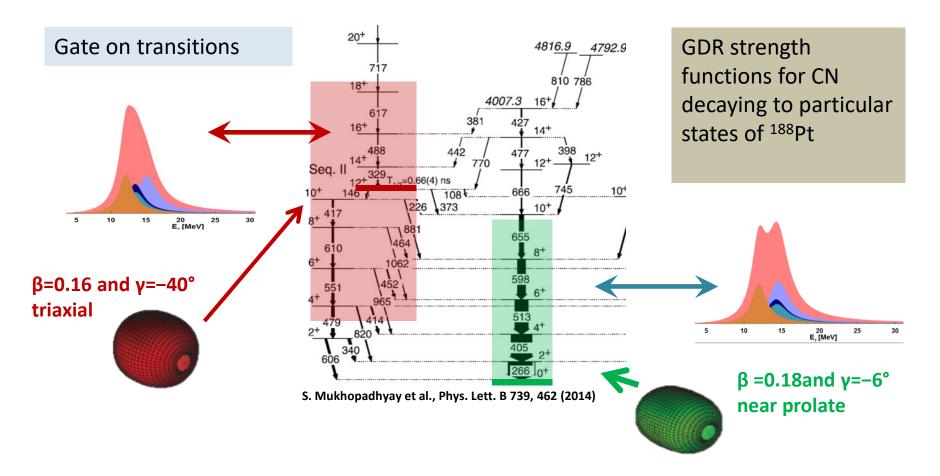
<u>M. Kmiecik</u>, M. Ciemała, A. Maj, B. Fornal, P. Bednarczyk, N. Cieplicka-Oryńczak, Ł. Iskra, K. Mazurek, M. Matejska-Minda, B. Wasilewska, et al. *IFJ PAN Kraków, Poland;*

F.C.L. Crespi, A. Bracco, F. Camera, S. Leoni, S. Ceruti et al. INFN Milano and Milano University, Italy;

J. Wilson, M. Lebois, I. Matea, D. Thisse et al., IPN Orsay, France;

P. Napiorkowski, M. Kicińska-Habior et al., Warsaw University, Poland;

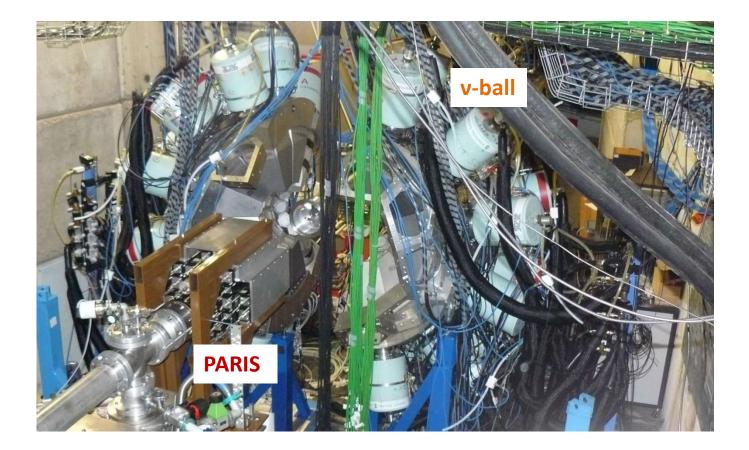
O. Dorvaux, Ch. Schmitt, J. Dudek et al., IPHC Strasbourg, France;

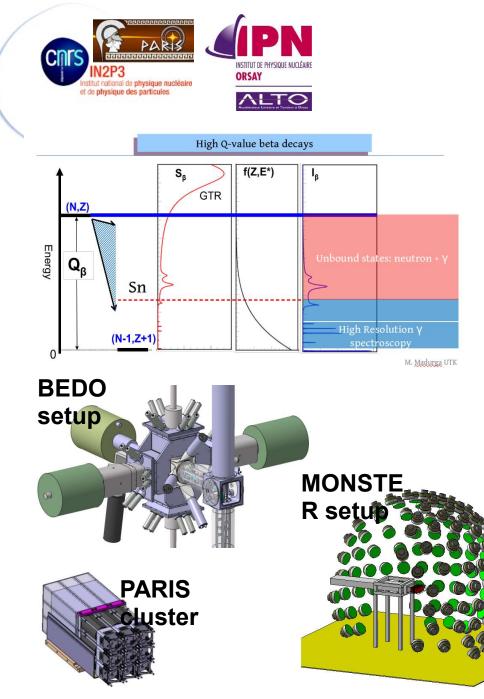

I. Mazumdar, V. Nanal et al, TIFR Mumbai, India;

And the PARIS Collaboration

The idea

High-energy γ rays from ¹⁹²Pt* CN decay in 4n channel in coincidence with low-energy transitions in ¹⁸⁸Pt


How the deformation changes along the decay path?



v-ball array: 33 Clovers +10 Coaxial HPGe coupled to 33 PARIS detectors: 11 CeBr:NaI phoswiches, 22 LaBr3:NaI phoswiches.

Triggerless DAQ by FASTER digitizer

Beta delayed combined neutron and HE gamma spectroscopy at Courtesy of A. ALTO Gottardo

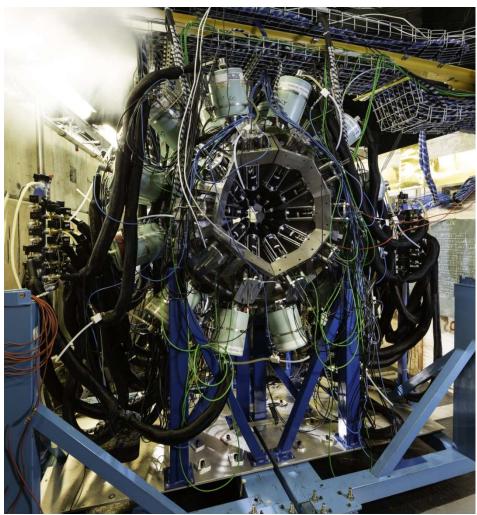
RIB – ALTO

- \rightarrow n-rich exotic nuclei (high Q values) (PDR in the decay window)
- \rightarrow pure RIB (laser ionization)
- \rightarrow ^{83,84}Ga decays to be studied

Goal :

→ investigate discrete states and resonance: above S_n as ,e.g., population of collective resonant states at high E* (like PDR)

 \rightarrow study of B(GT) in a large energy window


Method :

 \rightarrow coupling BEDO and MONSTER for neutron spectroscopy

→ coupling BEDO and PARIS for HE gan spectroscopy (gamma multipolarity measurements)

v-ball @ ALTO with PARIS

Main configuration

24 Clover Ge + BGO 10 Coaxial Ge + BGO 36 PARIS phoswich

200 channels

24 Clover Ge + BGO 10 Coaxial Ge + BGO 20 LaBr3

184 channels

125 MHz 14 bit for Ge 500 MHz 12 bit for scintillators

