

EP-DT Detector Technologies

Performance studies of RPC detectors with new environmentally friendly gas mixtures in presence of LHC-like radiation background

R. Guida, B. Mandelli, G. Rigoletti

CERN

CERN, 8 March 2019

Foremost parameters for selected mixtures

ore t	than 50 gas mixtures tes	ted	: :	1	:	1
	J	Chem struc	GWPmix	HV (V)	Streamer (%)	Pulse charge (pC)
	R32-iC ₄ H ₁₀ -SF ₆ 0.6	С	1030	7500	14	0.5 / 6.5
	R134a-iC4H10-SF6 0.3	C-C	1490	9600	1.5	0.5/6
	R152a-iC4H10-SF6 0.6	C-C	430	10000	10	1 / 8.5
	R245fa-iC ₄ H ₁₀ -SF ₆ 0.6-He 50	C-C-C	1260	6600	20	1/7
	HFO-iC ₄ H ₁₀ -SF ₆ 0.3-Ar 42.5	C=C-C	130	8900	70	2/15
			070	0000		

HFO-R134a 22.5 -iC4H10-CO2 50- SF6 1	c=c-c	560	10500	5	1.5/7.5	950	1.5
HFO-R134a 50-iC ₄ H ₁₀ -He 20	C=C-C	430	10800	50	1.5 / 8	400	2.5
HFO-R134 37.45-iC ₄ H ₁₀ -SF ₆ 0.6-He 20	C=C-C	890	10500	1.8	0.5/6	970	1.6
HFO-iC4H10-SF6 0.6-He 50	C=C-C	370	9000	20	1.5 / 8	700	4
HFO-iC4H10-SF6 0.3-Ar 42.5	C=C-C	130	8900	70	2/15	160	4
	0-0-0	1200	0000	20	1/1	010	۲

C and C2 structures -> direct operation -

*Parameters given at the efficiency knee

ΛV Eff-

Stream

(V)

600

1000

760

610

Clu Size

(strip)

1.5

1.5

1.6

 \sim

- C3 structure (HFO) \rightarrow addition of Ar, He or CO₂ -
 - Ar brings to high streamer probability
 - He and CO₂ based gas mixtures look promising but need to add more SF₆
- Still necessary to have R134a in the mixture to be competitive to standard gas mixture -

RPC 2016: <u>https://indico.ugent.be/event/0/session/18/contribution/40/material/slides/0.pdf</u> TIPP 2017: https://indico.ihep.ac.cn/event/6387/session/55/contribution/49/material/slides/0.pdf

M

CERN Gamma Irradiation Facility (GIF++)

RPC performance studied at different gamma rates for 3 gas mixtures: standard gas mixture and two eco-friendly gas mixtures

★ 95.2/4.5/0.3 R134a/iC4H10/SF6
★ 22.25/22.25/50/4.5/1 R134a/HFO/CO2/iC4H10/SF6
★ 27.25/27.25/40/4.5/1 R134a/HFO/CO2/iC4H10/SF6

- Gamma source

- ¹³⁷Cs of 14 Tb -> 662 keV gamma
- Lead filters to allow attenuation factors (ABS) between 1 and 46000

- Muon Beam

- 100 GeV and 10⁴ muons/spill (core beam size 10 cm x 10 cm)

ABS	Gamma Rate (kHz/cm ²)
100	55.3
220	41.2
2200	3.75
22000	0.774

Muon efficiency and detector currents

- The voltage drop is higher with the HFO-based gas mixture at different radiation rates
- At same efficiency, the currents of RPC operated with HFO-based gas mixture are higher with respect to the standard gas mixture

Muon efficiency and streamer probability

- The effective voltage applied to the gas is: $HV_{gas} = HV RI$
- The efficiency plotted as a function of HV_{gas} does not depends on the background radiation for both gas mixtures

Streamer probability at ABS 220 (counting rate ~ 250 Hz/cm²)

Gas mixture	At HV knee	At efficiency (+150 V)
Standard gas mixture	3%	13%
HFO + 40% CO ₂	8%	25%
HFO + 50% CO ₂	15%	23%

Pulse charge

- The avalanche charge is higher for these eco-friendly gas mixtures
- The streamer charge is lower for these eco-friendly gas mixtures
 - They decrease with the increase of radiation probably due to charge development effects

Gas recirculation with new eco-friendly gases

RPC detectors at LHC are working under gas recirculation:

important to validate RPC operation under gas recirculation and high background rate

- RPCs operated under gas recirculation with ecofriendly gas mixture in laboratory
 - Cosmics (low currents)
 - Performance were stable
- Now RPCs under gas recirculation at GIF++
 - Very high gamma rate
 - Up to 100% recirculation
 - Creation of impurities with radiation

- Monitoring of currents and performance

2866962/attachments/1604692/2545485/RPC2018_Roberto_v3.pdf

Small replica of a LHC gas

Gas Analysis - GC/MS - ISE (F⁻ concentration)

Creation of impurities under irradiation: R134a

Impurities created from C₂H₂F₄ breaking

- Under the effects of high background radiation and electric field, C₂H₂F₄ molecule breaks into fluorine radicals
 - Creation of F- radical free: very chemical reactive
 - Sub-products in the order of hundreds ppm
 - Accumulation in case of closed loop system
- Creation of these impurities also present in the RPCs at LHC experiments in Run 2
 - Not well know the maximum limit for safety of the detector

RPC2018: https://indico.cern.ch/event/644205/ contributions/2862258/attachments/1604693/2545475/ BMandelli RPC2018.pdf

What about HFOs?

- HFOs have a very short atmospheric lifetime
 - They are destroyed easier than C₂H₂F₄
- RPC operated with HFO-based gas mixture have higher currents with respect to std gas mixture

8

Creation of impurities under irradiation: HFO

Radiation measurements with HFO-based gas mixture

- Test performed at GIF++ by irradiating 2 RPCs detectors with 662 keV gamma
 - Scan in HV and at different ABS
- Gas mixtures tested: RPC standard and selected eco-friendly
 - Comparison between the production of impurities
- Impurities measured with different analysers
 - GC/MS
 - Ion Selective Electrode station for free F-

At detector efficiency

95.2% C₂H₂F₄ + 4.5% iC₄H₁₀ + 0.3 % SF₆ (40% relative humidity) F- production 3 ppm/h

27.25% C₂H₂F₄ + 27.25% HFO + 40% CO₂ + 4.5% iC₄H₁₀ + 1 % SF₆ *F*- *production* 5 ppm/h (40% relative humidity)

By assuming other components inert in the process

 HFO breaks 5 times more easily than C₂H₂F₄

Is there any risk for longterm detector operation?

8 Mar 2019

Preliminary

Beatrice Mandelli

Conclusions

R&D goal: to find a eco-friendly gas mixture that is compatible with the current ATLAS and CMS RPC systems

Eco-friendly gas mixtures for RPCs

- Direct substitution of C₂H₂F₄ (R134a) with HFOs not possible
- No many alternatives available on the market
- Need to work with 4-6 components gas mixtures

Characterisation of RPCs with different eco-friendly gas mixtures

- More than 50 gas mixtures tested
- Necessary to add an inert gas to lower the HV working point of HFO-based gas mixtures
- Few eco-eco-friendly gas mixtures show similar properties with respect to standard gas mixture

RPC operation with eco-friendly gas mixtures under high background radiation

- RPC tested up to ~ 300 Hz/cm²
- Slightly higher currents and streamer probability with HFO-based gas mixtures
- HFO seems to break more easily than R134a: studies on-going to understand possible effects