Supernova signals of light dark matter in directional detectors

W. DeRocco,¹ P. Graham,¹ D. Kasen,² G. Marques-Tavares,³ S. Rajendran²

¹Stanford University ²University of California, Berkeley ³University of Maryland

(hep-ph: 1905.09284)

Introduction

- Lack of WIMP signal motivates searches for other models
- *Light Dark Matter* = sub-GeV dark matter
- Dark photons, SIMPs, ELDERs, inelastic DM, hidden sectors...

Outline

- **Part I:** Supernova (SN) production of MeV-scale particles is large well outside cooling bound.
- **Part II:** SN-produced light dark matter is detectable in WIMP detectors. (hep-ph: 1905.09284)
- **Part III:** Directional detectors can discriminate between WIMPs and sub-GeV dark matter.

Outline

- **Part I:** Supernova (SN) production of MeV-scale particles is large well outside cooling bound.
- **Part II:** SN-produced light dark matter is detectable in WIMP detectors. (hep-ph: 1905.09284)
- **Part III:** Directional detectors can discriminate between WIMPs and sub-GeV dark matter.

Supernovae

- Core-collapse of massive star releases >10⁵³ erg
- Protoneutron star (PNS) has temperature ~30 MeV
- Neutrinos diffuse inside "neutrino sphere" then freestream, cooling PNS

Supernova cooling constraint

- Core-collapse of massive star releases >10⁵³ erg
- Protoneutron star (PNS) has temperature ~30 MeV
- Neutrinos diffuse inside "neutrino sphere" then freestream, cooling PNS
- 10-second cooling timescale observed during SN1987a
- Cooling constraint: new particle cannot transfer more energy than neutrinos

Motivation for our work

- Near cooling limit, flux of MeV-scale particles can still be very large
- Direct observation can constrain where cooling bound fails!

Outline

- **Part I:** Supernova (SN) production of MeV-scale particles is large well outside cooling bound.
- **Part II:** SN-produced light dark matter is detectable in WIMP detectors. (hep-ph: 1905.09284)
- Part III: Directional detectors can discriminate between WIMPs and sub-GeV dark matter.

Dark fermion

- Dark sector with stable fermion (χ)
- DM-SM coupling through heavy dark photon (A')

$$\begin{aligned} \mathcal{L}_{\text{dark}} &= -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{\epsilon_{Y}}{2} F'_{\mu\nu} B_{\mu\nu} + \frac{m_{A'}^{2}}{2} A'_{\mu} A'^{\mu} \\ &+ \bar{\chi} (i \not\!\!\!D - m_{\chi}) \chi \end{aligned}$$

Results apply to large class of models

- Above cooling bound, particles diffusively trapped by SM scattering
- Spectrum set by radii at which interactions decouple

Production/annihilation $\chi \ \bar{\chi} \longleftrightarrow e^+ \ e^-$

- Above cooling bound, particles diffusively trapped by SM scattering
- Spectrum set by radii at which interactions decouple

Production/annihilation $\chi \ \bar{\chi} \longleftrightarrow e^+ \ e^-$

Energy transfer $\chi \ e \longrightarrow \chi \ e$

- Above cooling bound, particles diffusively trapped by SM scattering
- Spectrum set by radii at which interactions decouple

Production/annihilation

$$\chi \ \bar{\chi} \longleftrightarrow e^+ \ e$$

Energy transfer $\chi \ e \longrightarrow \chi \ e$

 $\begin{array}{c} \text{Diffusive scattering} \\ \chi \ p \longrightarrow \chi \ p \end{array}$

- Above cooling bound, particles diffusively trapped by SM scattering
- Spectrum set by radii at which interactions decouple

Production/annihilation

$$\chi \ \bar{\chi} \longleftrightarrow e^+ \ e$$

Energy transfer $\chi \ e \longrightarrow \chi \ e$

 $\begin{array}{c} \text{Diffusive scattering} \\ \chi \ p \longrightarrow \chi \ p \end{array}$

Initial profiles

- Analytic fit to supernova simulation
- Convenient for estimating SN profile uncertainty
- Sets rate of DM production

Monte Carlo simulation

- Goal: find selfconsistent n_x
- Iteratively reweight DM profile until steady-state achieved
- Advantage: decoupling over extended region

Diffuse galactic flux

- Dark fermions are produced at semirelativistic velocities
- Emissions from several SN overlap to form diffuse flux
- High-momentum population detectable in WIMP detector

Direct detection

- Diffuse flux has high momentum
- WIMP detectors sensitive to diffuse flux of MeV-scale dark sector

Outline

- **Part I:** Supernova (SN) production of MeV-scale particles is large well outside cooling bound.
- **Part II:** SN-produced light dark matter is detectable in WIMP detectors. (hep-ph: 1905.09284)
- **Part III:** Directional detectors can discriminate between WIMPs and sub-GeV dark matter.

Discrimination

- Recoil spectra of cold WIMPs and hot MeV-scale DM very similar
- How can we discriminate these two populations?

Recoil spectra in liquid xenon for different DM mass

Direct detection

 Low-threshold directional detectors (e.g. CYGNUS) sensitive to diffuse flux

Direct detection

 Low-threshold directional detectors (e.g. CYGNUS) sensitive to diffuse flux

SN production

- Diffuse flux strongly peaked towards Galactic center
- Isotropic intergalactic contribution highly subdominant

Discrimination

- Diffuse flux strongly peaked towards Galactic center
- SN signal is perpendicular to WIMPs!
- Directional detectors are <u>necessary</u> for discrimination of any future signal

- **Part I:** Supernova (SN) production of MeV-scale particles is large well outside cooling bound.
- **Part II:** SN-produced light dark matter is detectable in directional WIMP detectors. (hep-ph: 1905.09284)
- **Part III:** Directional detectors can discriminate between WIMPs and sub-GeV dark matter.

Thank you!