Towards a Low Background CYGNUS-10

Neil Spooner (University of Sheffield)

- Quick update on DRIFT
- Electron-NR discrimination simulations at low energy
- Intrinsic backgrounds and passive shielding
- Simplified low background readout (GEM-wire hybrid)

Reporting work mainly by: Warren Lynch, Anthony Ezeribe (Sheffield) Tiziano Baroncelli (Melbourne)

DRIFT Update

 Long process to transfer to new Boulby lab now done HV feed damaged and replaced New water n-shield and source delivery

Operational with CF4:CS2:O2

New BDT analysis underway to increase efficiency and lower energy threshold to 12.5 keV_{ee}

Simulation of Low Energy e-background rejection

- Aim is CYGNUS-10 design with low WIMP mass capability
- Intrinsic gamma background is a severe challenge below 10 keV_{ee}
- Supplement work by Hawaii and elsewhere
- TRIM for nuclear recoils, GEANT4+PAI for e- recoils
- Use of realistic position resolutions and drift distances
- Focus on 20 Torr SF₆
- Examine position resolution 600 µm

Track Generation

Nuclear recoils created using TRIM

Up to 4 levels of secondary recoils included

Electron recoils created with GEANT4 PAI Model

Simulated Quenching

Fluorine recoils in 50 mbar CF₄

Simulation result

MIMAC Measurement Circles = Fluorine

Simulated Quenching

Recoils in 20 Torr SF₆

Diffusion and Resolution

10 keV electron in 20 Torr SF₆

Diffusion using Garfield++

Resolution using 3d binning

Resolution (microns)

Line Fit to Data

10 keV_{ee} fluorine, in 20 Torr SF_6

25 cm diffusion

100 µm resolution

Singular Value Decomposition (SVD) used to fit line in 3d.

Recoil Parameters

Results

Rejection vs Efficiency

Recoils per energy bin:

~10⁵ electrons, ~200 fluorine, ~200 sulfur,

Table : Efficiency at which all background was rejected for 100 micron resolution 25 cm diffusion

Energy (keV _{ee})	7	8	9	10
Efficiency (%)	69	75	75	100
S	93	99	100	100

Results

Rejection vs Energy at 50 % efficiency

Energy (KeV_{ee})

Solid line = fit to data Dashed = prediction Blue = data and error

Conclusions on Rejection

- ~95% rejection at 2 keV, 50% eff., zero diff., 100 μm
- ~99% rejection at 4 keV, 50% eff., 25 cm diff., 100 μm
- ~99% rejection at 4 keV, 50% eff., 25 cm diff., 600 μm

Demonstrates no need for better than ~600 μm for 25 cm drift i.e. diffusion dominated

- ~10⁴ at 6 keV_{ee} provides benchmark for e⁻ background
- This is with 3 parameters + BDT. Expect to do better....

CYGNUS-10 Background

- ~10⁴ at 6 keV_{ee} provides benchmark for e⁻ background
- Goal is < 1 neutron induced recoil per year in 1-10 keV_{ee}
- Goal is < 1 e⁻ background per year in 1-10 keV_{ee}

- Design must achieve intrinsic electron background rate of $\sim < 10^4$ per year in 1-10 keV_{ee}
- Assume 10 m³ fiducial volume, -ve ion for fiducilisation
- Assume Boulby Rock

Vessel Geometry

Example engineered design (Tiziano):

Cylindrical vessel made of 13 mm thick steel, 1.1 m radius, length (depends on internal shield thickness) ~ 2.5-3 m

Similar results for cubic design

Assume best known steel background (LZ data)

Designed to fit Boulby LEC

Rock Neutron Background

water shield (cm)

Conclusion: ~55 cm passive water shield required

Vessel Internal Shielding

• Steel is too active, so install internal Cu shield

Conclusion: ~5 cm passive internal Cu shield required

Vessel External Shielding Rock gamma spectrum

External Shield added to vessel and internal shield until rock gamma background <10⁴

Total rate from rock, vessel and internal and external shielding

Gas	Pressure	Internal shield	External shield	Water shield	Recoil rate
	(Torr)	(cm)	(cm)	(cm)	(keV ⁻¹ yr ⁻¹)
SF ₆	20	5	10	50	$4.3 \pm 1.0 \times 10^{3}$
SF ₆ +He	20+740	5	10	55	7.1 $\pm 0.4 \times 10^{3}$

Conclusion: ~10 cm passive external Cu shield required

Alternatives:

All Copper vessel (has to be structural), no SS
?

This get's us to <10⁴ per year neutron and e⁻ events from external sources...

Internal Detector Background

preliminary conclusion

 All current readout technology for CYGNUS-1000 except simple GEM+wire using known U, Th, K levels can not achieve <10⁴ e⁻ per yr

(see CYGNUS paper)

Internal TPC background from :

- THGEM+wire hybrid readout
- Acrylic support frame
- Field cage

THGEM-wire Hybrid Readout

Concept:

- Use simple low background (acrylic) CERN THGEM as gain stage for SF₆ (x~4000)
- Use simple low capacitance, low background wire readout (no or minimal gain)
- 600 µm XY resolution
- We believe this can achieve required intrinsic background

Cathode Voltage: V = -1.8 kV - 3.5 kV

Garfield Simulations

For 1 mm THGEM and 1 mm wire pitch

1st Prototype $(2 \times 2 \times 5 \text{ cm} \text{ FV})$ • alpha tracks seen 0.1 mm 1 mm • gain in 30 Torr SF₆ ~ x1270 $E_{\rm A}$ = 10500 Vcm⁻¹ -ThGEM (1 mm Thick) 0.8 mm Vessel Wall 50 mm Field rings Source Shield **←**Magnet Cathode Voltage: V = -1.8 kV - 3.5 kV ²⁴¹Am Source Pin Hole SF6_Alpha_Result_ThGEM_Only_37mins iger (ms) shift (V) trigger sense threshold Path 35 F Counts ²⁴¹Am alpha dma buffer fil Channel Acquired: 09/08/2017 15:05:23 Real Time: 4234.00 s. Live Time: 4202.00 s. File: C1UserHybridlAlpha 30Torr SF6 C2000V U0 D1050V Peak752 ThrshHold80mV 0908Channels: 8192 Detector: #1 DRIFTY-PC 926

2nd Prototype - scale up

Produced by Quick Circuits UK, 35 x 35 cm to fit CYGNUS-KM

Solder pads vertically separated by 600 microns and staggered to help with soldering the wires in place

Hole for 10 cm diameter THGEM: •600 micron pitch •400 micron width

Setup

1 mm between THGEM and wires.

0.6 mm between each wire.

x2 9-pin D-sub feedthroughs for unto 18 channels

18 wires each grounded via 1 f Mohm resistor.

Field Cage

Lab Setup and Electronics

Source Shutter, used for alpha source

Cremat pre-amps and shapers (16 in total)

Fe55 in 50 Torr CF₄

Fields: Drift 400 V cm⁻¹, Between wires and THGEM 2000 V cm⁻¹

Spectra at 17500 V cm⁻¹

Gain curve (wires)

Alphas (Am²⁴¹)15 Torr SF₆

Fields: Drift 500 V cm⁻¹, Avalanche 12500 V cm⁻¹, Between wires and THGEM 3000 V cm⁻¹

Conclusion: Promising, but much optimisation needed...

Conclusions

- A design for a CYGNUS-10 that has (on paper) the required "zero" background at ~5 keV_{ee} has been explored
- e-/NR discrimination at 10⁴ in the ROI may be feasible
- Even with this an all steel vessel is not acceptable unless internal Cu shielding is used
- A simplified GEM+wire readout may achieve sufficiently low internal background
- First results from this concept with 600 μ m look promising