
i2DBSCAN: an iterative density-based clustering
algorithm for CYGNO experiment

07-11-2019

Igor Abritta Costa on behalf of CYGNO

2

Introduction

❏ CYGNO experiment aims to develop a gas TPC instrumented with a
triple-GEM structure read-out by a high-resolution CMOS sensor;

❏ The goal of the experiment is to search for Dark Matter massive particles;
❏ In order to do that the event reconstruction algorithm should extract the

relevant information from the output image and then be able to identify the
types of signals.

❏ This work present the development of the clustering algorithm for CYGNO
experiment and some results.

This image is an example of what we can
have using a specific source and what we
need to identify:

❏ Brighter and long tracks;
❏ Lighter tracks;
❏ Brighter and rounded tracks;
❏ Close tracks;
❏ Overlapped tracks;
❏ etc..

3

The conditions are very different from the real
experiment, where it is expect only few natural
radioactivity background and the signal which
are short and curvy tracks.

Example of data for AmBe Source

Setup used to took this data

4

❏ Took using the ORANGE detector;
❏ AmBe Neutron source

Using this configuration we expect to
see three types of signals:

● He nuclear recoils (α);
● Low energy electrons due to X rays;
● MeV electrons due to 4 MeV γ.

DBSCAN - Density based clustering algorithm

DBSCAN divides a dataset into subgroups of high density regions using two
parameters: epsilon (ε) and minimum amount of points required to form a cluster
(minPts).

5

Core point – a point that has at least a
minimum number of other points (minPts)
within its ε radius;

Border point – a point is within the ε radius of
a core point BUT has less than the minimum
number of other points (minPts) within its own
ε radius;

Noise point – a point that is neither a core
point or a border point.

Drawbacks of DBSCAN

6

❏ It is not simple to set the parameters
(ε, minPts);

❏ DBSCAN uses as an input the coordinates of
the pixels that it should cluster, so these two
clusters (after a threshold and using only the
coordinates of X and Y as information) could be
seen by the algorithm as similar. And if they are
close, the algorithm could cluster them together;

❏ As DBSCAN looks for proximity on the space, it
is knew that increasing the dimensions could
lead us to the problem called ‘curse of
dimensionality’.

Proposed improvements on the clustering algorithm

7

In order to avoid the highlighted drawbacks an modification of DBSCAN called
i2DBSCAN is proposed:

❏ First, the idea is improving the detection of clustering with different sparsity of
pixels running DBSCAN more than one time with different set of parameters;

❏ Second, get the coordinate of the pixel (x,y) that passed throught the
threshold and replicate this coordinate by the number of z. In this way will be
possible to ‘simulate’ the third dimension without have to lead with the ‘curse
of dimensionality’;

Iterative DBSCAN method

1. Run DBSCAN on a image to look to ‘noise’
clusters and remove them from the image;

2. Search first for tracks with high density of
pixels;
a. Remove them from the image;

3. Search first for tracks with medium density of
pixels;
a. Remove them from the image;

4. Search for others tracks;
5. Go to next image.

These steps can be done for (x,y) or (x,y,z).
Theses X and Y are the input for
the clustering algorithm. 8

Iterative DBSCAN Method - Step Zero

Remove ‘noise’ clusters (don’t have any near neighbors)

9

Iterative DBSCAN Method - Step One

10

In this loop DBSCAN was set to look for
groups of pixels that have high density.

When the algorithm find a cluster in this
step it is labelled as ‘1’.

Then, the found clusters are removed
from the image to proceed to the next
step.

(In the image at right different colors means different
clusters and the black ones represents the not found
clusters)

Iterative DBSCAN Method - Step Two

11

The second loop try to find groups of
pixels with not so high density, let’s say
medium density.

And, as in the first step the found clusters
are labelled as ‘2’ and removed from the
image to proceed to the next step.

(In the image at right different colors means different
clusters and the black ones represents the not found
clusters)

Iterative DBSCAN Method - Step Three

12

The last one is more flexible and the goal
here is find the signals that aren’t found
yet.

In this case the label is ‘3’ and the output
of all steps is save for further analysis.

(In the image at right different colors means different
clusters and the black ones represents the not found
clusters)

Iterative DBSCAN Method - After the third step

13

In this particularly case, after the third
iteration we don’t have any pixels without
being found.

Notice that: This is due to the Step Zero,
that already removed from the image the
‘noise pixels’.

i2DBSCAN x DBSCAN

So, the difference between the two methods are not so big by looking at one
image. However, it can be an improvement considering a hundred of events.

14

i2
D

B
SC

A
N

N
ai

ve
 D

B
SC

A
N

Workflow of the algorithm
Repository for this work: https://github.com/CYGNUS-RD/analysis/

15

Extract
Features

Clustering
algorithm

Pedestal
subtraction

Preprocessing

Detector
output Rescale

Edges
(x,y,z) Analysis

Also, filtering methods are under study to
be applied at the ‘Preprocessing’ phase.

Note that the algorithm developed is such to reconstruct efficiently most of the
visible clusters, because without a simulation is difficult to say what really is signal
and background.

https://github.com/CYGNUS-RD/analysis/

Preliminary Results
on FNG data

17

About the FNG data
GEM

Voltage (V) He:CF4
Transfer field

strength
(kV/cm)

CMOS
Exposure
Time (ms)

Nominal Flux
cubic cm/min

Effective flux
cubic cm/min

Acquisitio
n Number
(# Events)

Up Voltage
(V) (fixed)

440 60/40 premix 2 100 300 218.4 300 2120
This image is using an exposure time
of 10s, in order to show the region
within the "field cage".

18

Difference between using (x, y) and (x, y, z)

2D 3D

19

Difference between using (x, y) and (x, y, z)

Looking at the images, what we can observe is
that with 3D the clustering algorithm is using the
‘energy’ to select the tracks.

2D 3D

It seems that 3D approach helps in not selecting
random noise, because it weights hits with larger
energy.

20

Example of clusters found at iteration 1 (Red)

21

Example of clusters found at iteration 2 (Blue)

22

Example of clusters found at iteration 3 (Yellow)

23

Example of clusters found

❏ In this work we show that i2DBSCAN could lead us to an improvement when
comparing against the naive approach;

❏ The next steps are:
❏ Characterize the background noise of the experiment;
❏ Develop a machine learning algorithm to classify the clusters;
❏ Look at the discriminant variables (e.g. cluster shapes) for each iteration

separately because each iteration may have different Signal/Background.
❏ Next-next step: we pretend to optimize the algorithm using the simulation +

digitalization data.

Conclusions and further work

24

Thank you!

Backup

27

RUN 815 - BEAM ON - 440 V - 100ms

