Carbon Nanotubes as Anisotropic Target for Dark Matter Experiments

Francesco Pandolfi

INFN Rome

CYGNUS 2019 11.07.19

Aiming for the 'Why Not' Region

Our Idea: A Carbon Nanotube Target

- Arrays of carbon nanotubes (CNTs)
 - Diameter: 20 nm
 - Length: up to ~ 300µm
- * Highly anisotropic material
 - 'Hollow' in tube direction

- Carbon work function: 4.3 eV
 - **Unaffected** by thermal noise
 - Sensitive to UV light (λ < 290 nm)

- Oark-photocathode' made of aligned CNTs
 - DM extracts **photoelectron** of few eV
 - e⁻ escapes **only** if in direction of tube axis

Directionality Serves Two Purposes

In Principle It Should Work!

Nanotubes: Wrapped-Up Graphene

Aligned CNTs Can Be Grown in Vacuum

The CVD chamber at Elettra (Trieste)

- Chemical Vapor Deposition (CVD) growth process
 - In high-vacuum reaction chamber
 - Catalyst nanoparticles deposited on substrate
 - **Precursor** gas (C₂H₂) injected
 - C₂H₂ decomposed by catalyst (Fe, Co, Ni)
 - Nanotube grows, catalyst rooted at **base**

2019 Growth: We Broke Some Records

- Had access to Trieste CVD chamber
 - Produced new batch of CNTs

Zooming On the Sides: There's Structure

Francesco Pandolfi

We Also Tried to Grow Tubes on ITO

Raman analysis after Ar+ bombardment

- Side penetration < 15 µm
- Longitudinal damage along full CNT length (180 µm)

 Filtering for electrons yet to be proven

• Aim of 2019-20 R&D

What About the Other Side?

What About the Other Side?

- Classical approx: E_{DM} ~ 1/2 M_{DM} (v/c)²
 - with v = 300 km/s: E_{DM} ~ 0.5 (M_{DM}/MeV) [eV]
 - so if all E transferred to e⁻:
 E_e ~ 5-50 eV (for M_{DM} = 10-100 MeV)

What About the Other Side?

Electron recoil

- Classical approx: E_{DM} ~ 1/2 M_{DM} (v/c)²
 - with v = 300 km/s: E_{DM} ~ 0.5 (M_{DM}/MeV) [eV]
 - so if all E transferred to e⁻:
 E_e ~ 5-50 eV (for M_{DM} = 10-100 MeV)

- With field of few kV/cm:
 electrons accelerated to few keV
 - Need to detect them (with high efficiency)
 - Not a completely trivial task

Francesco Pandolfi

Carbon Nanotubes for Dark Matter, 11.07.19

14

Using APDs for Low-Energy Electrons

- Commercial APDs designed for photons, not electrons
 - Protective 'window' covers silicon
 - Serves as photocathode
 - Absorbs low-energy electrons
- Windowless APDs from Hamamatsu
 - Sensitive area ø = 3 mm
- Challenge: measure single-e⁻ efficiency

The Rome-3 Electron Gun Facility

- ✤ Electron energy: 90 < E < 500 eV</p>
 - Uncertainty on E: 45 meV
 - Will upgrade to reach 1 keV
- ✤ Gun current: 3 < I < 38 nA</p>
 - Could go down to ~ 10 fA
- Beam profile < 1 mm</p>
 - Completely contained on APD
 (\$\varnothing\$ = 3 mm\$)

In-Situ Beam Profile Measurement

Francesco Pandolfi

Can Probe the Single-Electron Regime

- Keysight B2987A picoamperometer
 - Can measure down to 0.01 fA
- Allows to lower gun current
 - Lowest measurement:
 I(gun) = 8.6 fA ± 310 aA (!)
- Apparatus so sensitive that we saw ~10 fA fluctuations
 - Linked to AC cycle
 - Now fixed

Inserting the APD in the Vacuum Chamber

Francesco Pandolfi

Aiming the Gun on the APD

- Scanning gun position (V and H)
 - Reading APD with picoamperometer
 - Can clearly see APD structure

Francesco Pandolfi

*

... proving that we are indeed seeing the gun electrons

- Same operating principle
 - Instead of DM \rightarrow UV photons
 - UV-transparent support (eg fused silica)
- Important benchmark
 - Proof that can extract electrons from nanotubes
- Same challenge for APDs
 - Detect 1-10 keV electrons

The 'Side Project' Got Traction

- NanoUV: development of a high-efficiency photocathode for UV light detection
- One of 170 conceptual breakthrough ideas funded by ATTRACT (attract-eu.com/)
 - 100k EUR for 1 year
 (May 2019 May 2020)
 - Aim: build a working demonstrator
 - If successful, might obtain larger funding (1.7M) next year (only 10 projects)
- * Will build CNT growing facility at Sapienza

- By May 2020 we intend to:
 - Finalize APD characterization with low-energy electrons
 - Design and construct a NanoUV demonstrator
 - Demonstrate that UV photons eject electrons from nanotubes
 - Build a fully operational **CNT growing facility** in Sapienza
- * It's an ambitious program, it's going to be hard
 - But: We choose to go to the Moon, not because it's easy...
 - And we're having loads of fun

Conclusions

- We want to build a DM detector based on carbon nanotubes: 'Dark-PMT'
 - Electron recoil: sensitive to sub-GeV Dark Matter
 - **Directionality** by design (in-situ background estimation)
- Succesful CNT growing campaign in 2019
 - Already some **record-breaking** growths
- APD characterization with low-intensity electron gun
 - Seeing electrons with 90 < E < 500 eV
- ATTRACT funding to develop a CNT-based UV light detector
 - Will build a CNT growing facility in Sapienza