AN EFT APPROACH TO LIGHT DARK MATTER DETECTION WITH SUPERFLUID 4HE

Angelo Esposito École Polytechnique Fédérale de Lausanne (EPFL) CYGNUS 2019 Sapienza, Rome, July 2019

Talk mostly based on F. Acanfora, A. E., A. D. Polosa — EPJC (2019); arXiv: 1902.02361

OUTLINE

- Introduction and motivation
- Relativistic EFT for superfluids
- The dark matter phonon interaction
- Results
- Conclusions and future plans

INTRO Why light dark matter?

- If interpreted as new invisible particles, this is one of the strongest evidences for physics beyond the Standard Model
- Great experimental effort has been devoted to the search for WIMPS

 $\begin{cases} m_{WIMP} \sim 100 \text{ GeV} \\ \sigma_{WIMP} \sim \text{electroweak} \end{cases}$

- No positive results so far!
- What about lighter dark matter? ---> The mass region below I GeV is essentially unexplored

INTRO Why helium-4?

- A promising proposal is that of employing superfluid helium-4:
 - I. Light nucleus ------> large energy released to the material
 - 2. Collective excitations are gapless
 - 3. Cheap and pure against radioactive decay
 - 4. Almost no electronic excitations
- A processes where a dark matter emits two collective excitations might release enough energy to be detected!

[Schutz, Zurek - PRL 2016, 1604.08206; Knapen, Lin, Zurek - PRD 2017, 1611.06228]

INTRO Plan of action

- The standard approach is complicated ----> helium-4 is strongly coupled ----> to model its microscopic interactions with dark matter is hard
- The new relativistic EFT approach presents some advantages:
- Our <u>plan of action</u>:
 - I. Write the most general low-energy action for the phonon and its interaction with the dark matter particle
 - 2. Determine the effective couplings with a matching procedure
 - 3. Compute total rates and angular distributions

EFT FOR SUPERFLUIDS

Spontaneous symmetry breaking

- All states of matter break <u>spontaneously</u> at least part of the fundamental Poincaré group
- The associated Goldstones are (often) gapless ---> collective excitations of the medium [see e.g. Lange – PRL 1965; Leutweyler – HPA 1970, hep-ph/9609466; Nicolis, Penco, Piazza, Rattazzi – JHEP 2015, 1501.03845]
- In this language, an s-wave superfluid is characterized by
 - I. A U(I) symmetry (particle number) with charge Q that is at finite density
 - 2. Spontaneously breaks boost invariance (as any state of matter) chemical potential
 - 3. Spontaneously breaks the charge Q and time-translations H but preserves $\bar{H} = H \mu Q$

[see e.g. Son - hep-ph/0204199; Nicolis - 1108.2513]

This pattern is associated to a single Goldstone
 boson ---> the superfluid phonon

Angelo Esposito

6

cutoff of the EFT! <-

EFT FOR SUPERFLUIDS Phonon's effective action

The simplest way to implement the previous pattern is via a single real scalar field:

$$\psi(x) \rightarrow \psi(x) + a$$
 $\langle \psi(x) \rangle = \mu t$ $\psi(x) = \mu t + \pi(x)$ shifts under the $U(I)$ breaks boosts, time-transl. and the $U(I)$ fluctuations around equilibrium:
Goldstone = phonon

• The most general low-energy action for the phonon must be invariant under all symmetries $S = \int d^4x (P(X)) \quad \text{with:} \quad X = \sqrt{-\partial_\mu \psi \partial^\mu \psi} \quad \text{local chemical potential}$

Expanding in small fluctuations

$$S = \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{c_s^2}{2} (\nabla \pi)^2 + \lambda_3 \sqrt{\frac{\mu}{n}} c_s \dot{\pi} (\nabla \pi)^2 + \lambda_3 \sqrt{\frac{\mu}{n}} c_s \dot{\pi}^3 + \dots \right]$$
equilibrium number density

• All couplings are given only by the superfluid's equation of state

$$c_s^2 = \frac{P'}{\mu P''}; \quad \bar{n} = P'; \quad \lambda_3 = \frac{c_s^2 - 1}{2\mu}; \quad \lambda'_3 = \frac{1}{6} \frac{\mu c_s^2}{\bar{n}} P'''$$

Angelo Esposito

Sapienza, Rome — July 2019

DARK MATTER-PHONON INTERACTION

Effective action

- Let us focus on a specific model
- We consider a scalar dark matter, charged under a new $U_d(1)$, and interacting with the Standard Model via a heavy scalar mediator

$$S_{DM} = -\int d^4x \left[\frac{\partial \chi |^2 + m_{\chi}^2 |\chi|^2}{2} + \frac{1}{2} (\partial \phi)^2 + \frac{m_{\phi}^2}{2} \phi^2 + \frac{m_{\chi}^2 |\chi|^2}{2} + \frac{\partial \chi |\chi|^2}{2} + \frac{\partial \chi$$

• Integrating out the mediator at tree level shifts the mass of the dark matter

$$S_{DM} = -\int d^4x \left[\left| \partial \chi \right|^2 + m^2(X) \left| \chi \right|^2 \right]$$

• The effective in-medium mass is a function of the local density

$$m^2(X) \simeq m_{\chi}^2 - g_{\chi}g_{He} \frac{m_{\chi}}{m_{\phi}^2} n(X) \longrightarrow$$
 contains the phonon field!

Angelo Esposito

Sapienza, Rome — July 2019

DARK MATTER-PHONON INTERACTION

Effective action

Expanding again in small fluctuations we get the dark matter-phonon interactions

$$S_{DM} \supset \int d^4x \left[g_{\chi} g_{He} \frac{m_{\chi}}{m_{\phi}^2} \left(\frac{d\bar{n}}{d\mu} \sqrt{\frac{\mu}{\bar{n}}} c_s \right) \dot{\pi} - \frac{1}{2} g_{\chi} g_{He} \left(\frac{d\bar{n}}{d\mu} \frac{c_s^2}{\bar{n}} \right) (\vec{\nabla} \pi)^2 + \frac{1}{2} g_{\chi} g_{He} \left(\frac{d^2 \bar{n}}{d\mu^2} \frac{\mu c_s^2}{\bar{n}} \right) \dot{\pi}^2 \right] |\chi|^2$$

[Abraham, Eckstein, Ketterson, Kuchnir, Roach - PRA 1970]

• Putting all together we get the Feynman rules for the following diagrams

RESULTS

How do we see phonons?

- How would one detect phonons experimentally?
- Quantum evaporation:

Phonon travels up to the surface of helium-4 \longrightarrow if it has enough energy ($\omega \ge 0.62 \text{ meV}$) it can eject an atom from the surface \longrightarrow the atom can then be detected [Hertel, Biekert, Lin, Velan, McKinsey – 1810.06283; Maris, Seidel, Stein – PRL 2017, 1706.001171

Energy released:

Phonons heat the system up \longrightarrow if the energy released is enough ($\omega_{tot} \ge 1 \text{ meV}$) the change in temperature is appreciable \longrightarrow detect with bolometers (e.g.TES) [Hertel, Biekert, Lin, Velan, McKinsey – 1810.06283]

RESULTS One-phonon

- The simplest process one can consider is the emission of a single phonon
- This process has two important features:
 - I. Leading order in small phonon's coupling ------> dominant when allowed
 - 2. Since $v_{\chi} \simeq 10^{-3} \gg c_s \simeq 10^{-6}$ the emission angle is fixed (Cherenkov) \longrightarrow possible <u>directionality</u>!
- However, it is relevant only in a limited kinematical regime:
 - I. Max phonon's energy is $\omega_{max} = 2c_s m_{\chi} v_{\chi} \simeq 10^{-9} m_{\chi} \longrightarrow$ in order for the phonon to be detected it has to be $\omega \ge 0.62 \text{ meV} \longrightarrow$ only effective for $m_{\chi} \ge 1 \text{ MeV}$
 - Phonons never have energies larger than I meV (cutoff) -----> can only be detected via quantum evaporation

RESULTS One-phonon

• Given the Feynman rules the rate is given by

$$\frac{d\Gamma}{d\Omega d\omega} = \frac{g_{\chi}^2 g_{He}^2}{m_{\phi}^4} \left(\frac{d\bar{n}}{d\mu}\right)^2 \frac{m_{He}\omega^2}{32\pi^2 v_{\chi}\bar{n}} \delta\left(\cos\theta - \frac{c_s}{v_{\chi}} - \frac{q}{2m_{\chi}v_{\chi}}\right)$$

• The emission angle is fixed to be

$$\cos \theta = \frac{c_s}{v_{\chi}} + \frac{q}{2m_{\chi}v_{\chi}} \simeq 10^{-3} \implies \theta \simeq 90^{\circ}$$

• The total rate can then be found as a function of the dark matter - proton cross section

$$\Gamma = 4 \left(\frac{m_{He} + m_{\chi}}{m_{He} m_{\chi}} \right)^2 \sigma_p \frac{\bar{n}}{m_{He} c_s^4 v_{\chi}} \frac{\omega_{max}^3 - \omega_{min}^3}{3}$$

RESULTS Two-phonons

- Another interesting observable is the emission of two phonons
- This process is suppressed with respect to the one phonon emission but:
 - It is effective also for dark matter as light as 1 keV
 - 2. It should be detectable via both quantum evaporation and energy deposit
- the center of mass

Integration region implementing: $|\mathcal{M}|^2$ $\mathcal{A}\theta_{12}d\theta_2d\omega_1d\omega_2\frac{\omega_2}{P}$ I) energy-momentum $\Gamma = \frac{1}{8(2\pi)^4 c_s^5 m_{\gamma}}$ conservation; $\mathcal{A} = \cos(\phi_{12} - \phi_2)$ 2) experimental cuts; 3) applicability of EFT Angelo Esposito Sapienza, Rome — July 2019

RESULTS

Distributions and projected bounds

• We have all the ingredients to compute angular distributions and exclusion plots

Most of the dark matter energy is released when the two phonons are almost back-toback

95% C.L. for I kg of helium for I year exposure

The exclusion region is very promising.

However... disagreement between different theoretical approaches in the small mass region!

CONCLUSION AND FUTURE PLANS

- The EFT approach to the description of the coupling between dark matter and collective excitations can present some advantages over standard techniques
- The possibility of detecting sub-GeV dark matter using superfluid helium-4 seems promising. The projected bounds are promising even for 1 year exposure and 1 kg of material
- Future plans:
 - I. Compare the EFT with standard approaches. Small mass discrepancy?
 - 2. Try different models of dark matter. E.g. dark photon mediator, work in progress with also Emma Geoffray (EPFL)
 - 3. Possible other materials?
 - 4. Many others...

THANK YOU!