

RED: A SIPM BASED LAR TPC FOR DIRECTIONALITY STUDIES

L. Pandola (LNS) on behalf of the ReD Working Group (DarkSide Collaboration)

dark<mark>side</mark>

Physics background

- DarkSide at Gran Sasso Laboratory, WIMPs using search using a dual-phase TPC with lowradioactivity LAr
 - Operated a **50 kg TPC** (DarkSide-50)
 - <u>Next step</u>: 20 ton LAr **TPC** (DarkSide-20k)
 - Novel light readout with SiPM
 - Getting ready for 2022, exposure O(100) ton yr
 - Expected sensitivity 10⁻⁴⁷ cm² @ M_W =1 TeV/c²
 - Next-next step: global worldwide effort (ARGO, 300 • ton LAr)
- More sensitive to low-mass WIMP than Xe, due to the lighter target

Working principle of the TPC in one slide

A smoking gun for dark matter discovery

- Correlation of recoil direction with the expected direction of the WIMP galactic wind would be a smoking gun
 - Much more convincing than a mere excess of recoil events

4

A smoking gun for dark matter discovery

- Correlation of recoil direction with the expected direction of the WIMP galactic wind would be a smoking gun
 - Much more convincing than a mere excess of recoil events

A smoking gun for dark matter discovery

- Correlation of recoil direction with the expected direction of the WIMP galactic wind would be a smoking gun
 - Much more convincing than a mere excess of recoil events

The ReD project

7

- ReD is a project within the DarkSide collaboration, aiming to characterize the response of a TPC to neutron-induced Ar recoils
 - Scrutinize the directionality effect
 - Confirm that the TPC response is different for different recoil directions with respect to the electric field
 - Measure the response to very low-energy nuclear recoils (< few keV)
 - Not part of the original project, but quickly became a hot topic
 - Be a test bench for optoelectronics of DarkSide-20k (SiPM readout)
 - The ReD TPC is a **miniaturized version** (5 x 5 x 5 cm³) of the DarkSide-20k TPC and features all technical solution developed so far
 - Check performance within a realistic situation, early identification of problems
- Produce Ar recoils by using a suitable neutron beam
 - Two-body closed kinematics (n,n'), such to determine energy and direction of ⁴⁰Ar recoils

ReD conceptual design

- Use a neutron beam produced via p(⁷Li,⁷Be)n
 - ⁷Li beam from the TANDEM accelerator of INFN-LNS (Catania)
 - Detect the associate particle (⁷Be) and ToF to tag neutron energy event by event (fixed by kinematics)
- Detect neutrons elastically scattered off ⁴⁰Ar
- Pay attention to arrange the setup such to tag nuclear recoils ~parallel and ~perpendicular to the E-field

THE INGREDIENTS

The TPC

- Miniaturized version of the DarkSide-20k TPC
 - Active volume: 5(L) x 5 (W) x 6 (H) cm
 - Gas pocket: 7 mm thick
 - TPB coating for wavelength shifting
- Light readout: 5x5 cm² SiPM (as for DS-20k)
 - 24x1cm² SiPM 24 ch readout (top), for increased (x,y) resolution
 - 24x1cm² SiPM, 4 ch readout (bottom)
- Front End from the DS-20k R&D
- 3D event reconstruction:
 - (x,y) from S2 pattern on the top SiPMs
 - z from drift time (up to ~60 µs)
- ER/NR discrimination by using PSD parameter f_{prompt} on S1
 - Fast/total ratio

The Neutron Spectrometer

- Nine 3" Liquid Scintillators cells (EJ-309), readout by PMTs
 - Featuring n/γ discrimination
 - Absolute calibration with ²⁵²Cf (@LNS), ε~20-40% for neutrons between 2 and 8 MeV
 - Time resolution ~0.5 ns rms
- Arrangement within a "ring"
 structure

Inside the scattering chamber

- Si telescope to detect ⁷Be associated with neutron
 - ΔE Si detector (20 µm), E Si detector (500 µm)
 - Placed at 5 deg
- Targets
 - CH₂, 250-400 μg/cm²

 α sources

Beam & geometry settings

- ⁷Li beam delivered by LNS-TANDEM: 28 MeV, CH₂ target
 - Two solutions allowed from kinematics with θ_{Be} =5°
 - θ_n =22.3 deg, E_n=7.4 MeV \rightarrow TPC
- ΔE-E telescope allows for a clear Z separation (Li vs. Be)
- Energy/angles tuned to select ⁴⁰Ar recoils of 66 keV in the TPC
 - Other recoils energies selected by changing the beam energy only

PUTTING ALL TOGETHER

Two test beams@LNS in 2018

n-like

γ-like

Ar PSI

- Commission and integrate the full system with "real" neutrons
 - Alignment: mechanical procedure, need O(mm's) precision
 - E_{beam} = 28 MeV (E_{rec} = 66 keV)
- Found events with the proper signature
 - 1. ⁷Be in the Si telescope (and in the proper *locus*)
 - 2. neutron in the TPC (PSD & ToF)
 - 3. neutron in the LSci's (PSD & ToF)
- Rate lower than expected
 - Mis-alignment, beam divergence

Beam optimization (May 2019)

- 3-day test beam to implement & check beam improvements
 - New beam diagnostics, thicker target
 - Without TPC
- "Flower" neutron camera made with LSci to study the neutron spot
 - Center of the central petal at the position of the TPC
- Look for LSci events in coincidence with ⁷Be in Si
- Much higher beam current and better focusing than in 2018
 - 10 enA current routinely achieved
 - >80% of the tagged beam within 0.3 msr ⁻¹⁰ from the target
 - O(5 n/s) on central petal (ΔE < 200 keV)

Neutron beam characterization - 1

- Kinematics: two solutions with ⁷Be at the same angle
- For the low-energy recoils studies, smaller energy neutrons are more appropriate \rightarrow look for the other solution, at $\theta_n \sim 45^\circ$
- Basically, tag two neutron beams at the same time
 - Different neutron angle, different neutron energy

Neutron beam characterization - 2

Triple-coincidences (10h run)

- ReD configuration, with the central LSci playing as the TPC
- Rate of "good" events x10 than in 2018 (~4 cph per detector)

20

(C++ and python)

Two reconstruction codes

TPC Optimization - 1

- Single-phe spectrum from laser
 - Single photons nicely separated
 - Effect of after-pulses and cross-talk observed, K_{dup} = 30%
 - Digital filtering
- Light yield at null field about 9 phe/keV
 - Scintillation (S1) anticorrelated with charge (S2)
 - Relative balance changes with electric field, due to recombination

³⁰ 35 S2/S1

25

TPC Optimization - 2

- Set E_{drift} and E_{mult} independently, such to optimize
 - S1 (light) and S2 (charge) yield
 - Resolution in S1 and S2
- S1 (energy) resolution further improved by digital filtering
- Set the configuration of the electric fields such to achieve $g_2 \sim 14$ phe/e-
- TPC performance suitable for the measurement!

TPC Optimization - 3

- Calibration with a diffused ^{83m}Kr source (32+9 keV)
 - Nice uniformity in z (T_{drift})
 - Within 15% in xy (central SiPMs see more light)
 - Total light yield compatible with previous estimates based on ²⁴¹Am

Planning for 2019-2020

- One more test beam in July
 - Implement possibility of a fine adjustment the position of the Si telescope by a dedicated motor

- Re-deploy the TPC
- Take data: physics run (7-10 days) with the full system in Fall 2019
 - One single beam energy (E_{Li} = 28 MeV $\rightarrow E_{rec}$ = 66 keV)
 - <u>Milestone</u>: prove the performance of the system
- (Following): take more runs (~7 days) each with different beam energy (up to Spring 2020)
 - Explore directional sensitivity in the range 20-100 keV_{rec}
 - Take more data points for low-energy recoils
 - Consider to use an array of smaller LSci detectors (1-in), in order to improve sensitivity by a better 3D neutron tracking

Conclusions

- ReD has a two-fold value as a physics experiment (directionality, low-energy characterization) and as a test bench for the DarkSide-20k new technologies
- Produce nuclear recoils by neutron scattering
 - Neutrons from p(⁷Li,⁷Be)n with a ⁷Li beam of 18-30 MeV
 - TANDEM accelerator at LNS
 - Two-body kinematics
- Components have been tested, characterized and debugged individually
- Commissioning and integration of the *full system* within several test beams in 2018-2019
 - Experiment made by three different kind of detectors
 - Beam intensity and divergence achieved
 - Performance of all systems good enough for the measurement
- Getting ready for the "physics run" within this year
- Stay tuned!