

Giovanni De Lellis University Federico II and INFN, Naples, Italy On behalf of the NEWSdm Collaboration

CYGNUS 2019, Rome 2019 Jul 10th

NEWSdm COLLABORATION

75 physicists 14 Institutes

JAPAN

<u>ITALY</u>

University and INFN Bari LNGS, Gran Sasso University and INFN Napoli INFN Roma

SOUTH KOREA Gyeongsang University

RUSSIA LPIRAS Moscow JINR Dubna SINP MSU Moscow INR Moscow Yandex School of Data Analysis

Chiba, Nagoya, Toho

TURKEY METU Ankara

Website: <u>news-dm.Ings.infn.it</u>

Letter of intent: https://arxiv.org/pdf/1604.04199.pdf

NEWSdm - G. De Lellis

NEWSdm - G. De Lellis

POWER OF DIRECTIONALITY

 Impinging direction of DM particle is (preferentially) opposite to the velocity of the Sun in the Galaxy, i.e. from Cygnus Constellation

- Unambiguous proof of the galactic origin of Dark Matter
- Unique possibility to overcome the "neutrino floor", where coherent neutrino scattering creates an irreducible background

NEWSdm PRINCIPLE

- <u>Aim</u>: detect the direction of **nuclear** recoils
- <u>Target</u>: nanometric emulsion films acting both as target and tracking detector
- <u>Background</u> reduction: neutron shield surrounding the target
- <u>Fixed pointing</u>: target mounted on equatorial telescope pointing to the Cygnus Constellation
- **Location**: Underground labs

NEWSdm - G. De Lellis

Detection principle

- 1. Ionization induced by a particle
 - 2.6 eV band gap
- 2. Electrons trapped at a lattice defect on the crystal surface
 - Attract interstitial silver ions
 - Produce a "latent image" = Ag_n
- 3. Chemical amplification of signal
 - Development \rightarrow silver filaments
 - 10⁷ 10⁸ amplification
- 4. Dissolve crystals
- 5. Observe it at optical microscopes

NIT EMULSIONS

AgBr-I: sensitive elements Organic gelatine: retaining structure PVA to stabilise the crystal growth

OPTICAL MICROSCOPE READ-OUT: STEP 1

Test using 400 keV Kr ions

Scanning with **optical microscope** and **shape recognition analysis**

Selection of Kr ion tracks with shape analysis

TRACK SELECTION: Shape analysis

INTRINSIC ANGULAR RESOLUTION ¹¹

- Neutron test beam sample: exposure at FNS facility (Japan)
- Compare clusters with elliptical (e > 1.1) shape with the proton recoil direction
- Scattering contribution negligible

NEWSdm - G. De Lellis

CRYSTAL MODEL

Simulation of crystals in NIT

Crystal radius gaussian (22.0, 3.4) nm Volume occupancy ~45 %

Events generated by SRIM are translated in the crystal framework

TECHNOLOGICAL DEVELOPMENTS SCIENTIFIC REPORTS

OPEN A Novel Optical Scanning Technique with an Inclined Focusing Plane

Andrey Alexandrov (1,2,3,4, Giovanni De Lellis^{1,2} & Valeri Tioukov¹

Camera

20x oil

objective lens

inclined by 35°

b)

Received: 9 August 2018 Accepted: 18 January 2019

Figure 1. Illustration of (**a**) Stop&Go (SG), (**b**) Continuous Motion (CM) and (**c**) the proposed Inclined Motion (IM) scanning techniques.

Nature Scientific Reports (2019) 9:2870

BEYOND OPTICAL RESOLUTION: NEW TECHNOLOGIES

RESONANT LIGHT SCATTERING FROM AG NANOPARTICLES ¹⁶

$$E_{l} = \frac{3\varepsilon_{d}(\lambda)}{\varepsilon_{m}(\lambda) + 2\varepsilon_{d}(\lambda)} E_{0}$$
$$\varepsilon_{m}(\lambda_{l}) + 2\varepsilon_{d}(\lambda_{l}) \approx 0$$

Nano-metal in medium \mathcal{E}_d Oscillation of e-cloud

E_l is resonance enhanced

Scattering spectrum depends on the light polarization and on the grain shape *H.Tamaru et al., Applied Phys Letters 80, 1826 (2002)*

The polarization dependence of the resonance frequencies strongly reflects the shape anisotropy

RESONANT LIGHT SCATTERING: SILVER GRAINS

Different orientation

RESONANT LIGHT SCATTERING: SILVER GRAINS

Published on PTEP (2019) 063H02

A TRACK MADE OF TWO GRAINS

e = 1.49 without polarizer Track validated by elliptical shape analysis 1µm 1µm 3 dx 2 dy dy (pixel 58nm) pixel 58nm 0 0 0 0 0 0 0,000000 0 0 -1 Linear fit slope = track direction -2 -2 -3∟ -3 -3 150 -2 30 90 120 180 2 60 -1 () dx (pixel 58nm) Angle of polarization (degree)

Published on PTEP (2019) 063H02

3

SUPER RES	OLUTION MICRC	OSCOPE WITH 3D RECONSTRUCTIO	N	20	
Int.Class	Appl.No	Title Applicant	Ctr	PubDate	
1. WO/2018/122814 METHOD AND OPTICAL MICROSCOPE FOR DETECTING PARTICLES HAVING SUB-DIFFRACTIVE SIZE				05.07.2018	
G02B 21/00	PCT/IB2017/058544	ISTITUTO NAZIONALE DI FISICA NUCLEARE	DE LE	LLIS, Giovanni	

Optical microscope (100) for detecting particles having sub-diffractive size within a sample, comprising: a display system (50), having a first objective (01); a polarising device (6); an analyser system (60), having a second objective (02) and a reflection element (7), wherein an optical path between the first objective (01) and the secon objective (02) is divided into two identical parts symmetric with respect to a coupling plane; a sensor device (S2) configured to detect a plurality of beams correspondin to a plurality of polarisation configurations of the polarising device (6) that is reflected by the reflection element (7), thus acquiring a plurality of images; and one or more processing units configured to perform a two-dimensional method of analysis of the plurality di acquired images.

STEP2: PLASMON ANALYSIS

nanotracks

0.0

pol angle

background

Data categories:

- 1. Micro-tracks: two or more grains aligned
- 2. isolated grains
 - •Multi-grain clusters (≥ 2 brightness peaks) \longrightarrow microtracks
 - •Moving grains $(\Delta s > \Delta s_{thr}) \longrightarrow$
 - •Static grains $(\Delta s < \Delta s_{thr})$

MULTI-GRAIN CLUSTERS

STEP2: PLASMON ANALYSIS

0.0

STATIC GRAIN

CARBON ION SAMPLES

Aim: plasmon analysis with C-Ion samples

Horizontal exposures to produce nanotracks in NIT with a preferred direction (signal-like samples)
Vertical exposure to produce in most cases one grain in NIT with an isotropic direction (background-like sample)

Directionality demonstrated with Carbon ions down to 30 keV

EFFICIENCY OF PLASMON ANALYSIS

$$\epsilon_{pl} = \frac{N_{multi-grain} + N_{moving}}{N_{tot}}$$

C100keV:	48 %
C60keV:	40%
C30keV:	31%

Plamon analysis essential for 30keV Carbon detection

efficiency \rightarrow track length threshold

track length threshold (120±5) nm

Further threshold lowering using U-NIT with larger granularity

Colour Camera and Extension of the Plasmon Resonance Analysis

LSP (Localized Surface Plasmon) resonance

Annu. Rev. Phys. Chem. 58 (2007) 267-297

dipole in metallic particle

dipole moment $p = 4\pi\varepsilon_m a^3 \frac{\varepsilon_1(\lambda) - \varepsilon_m(\lambda)}{\varepsilon_1(\lambda) + 2\varepsilon_m(\lambda)} E_0$

resonance

$$\varepsilon_1(\lambda_l) + 2\varepsilon_m(\lambda_l) \approx 0$$

<u>Appl. Phys. Lett. 80, 1826 (2002)</u>

Ag grain size \rightarrow resonance wavelength

Colored optical image of silver rod

*polarization rotating

~45 nm : blue ~45 nm : blue ₂₇ ~80 nm : green ~120 nm :orange–red

100 nm

27

100 nm

Silver Nanoparticles for calibration

Silver Nanorods for calibration

40 nm diameter, 80 nm height

40 nm diameter, 120 nm height

Image size 15 μ m x 15 μ m

Image size 15 μ m x 15 μ m

Head/tail discrimination!

Background and analysis techniques

BACKGROUND SOURCES

32

EXTERNAL SOURCES

Environmental photons
 Environmental neutrons
 Cosmogenic neutrons

GEANT4 SIMULATION

INTRINSIC SOURCES 1) Radioactivity from ¹⁴C 2) Intrinsic neutrons

Astroparticle Physics 80 (2016) 16-21

Intrinsic neutron background of nuclear emulsions for directional Dark Matter searches

$\leq 1/10$ kg year without raw material pre-selection

EXTERNAL BACKGROUND

1 m of Polyethylene provides a nuclear induced recoil rate of about **1.4**

Source	Rate $[10 \text{ kg} \times \text{ y}]^{-1}$
Environmental gammas	$(1.97 \pm 0.17) imes 10^4$
Environmental neutrons	$\mathcal{O}(10^{-2})$
Cosmogenic neutrons	1.41 ± 0.14

33

Further discrimination:

Use OPERA-like emulsions as veto

Topological identification

RADIOACTIVITY FROM ¹⁴C

Given the carbon content in the emulsion and the $^{14}\rm C$ activity, beta-rays amount to ${\sim}10^8$ per kg*year

Strong reduction factor: NIT emulsions insensitive to MIP and largely insensitive to electrons

Additional **level arms** being quantified:

- Dedicated chemical treatments
- Reduced sensitivity to electrons at low temperatures
- Electron response to polarized light scattering
- Colour camera to distinguish nuclear recoils from electrons
- Replace the gelatine with synthetic polymers (final choice)

NIM A 845 (2017) 373

MACHINE LEARNING APPROACH

- Signal: samples exposed to C ions at different energies
- **Background:** gamma exposure, random fog

C100keV

- **3D CONVOLUTIONAL NN:** approach designed to work with images, capable of discovering complex features of images and gaining high performance
- Stacking together images for different light polarizations to obtain a 3D image

PRELIMINARY RESULTS

60keV Carbon VS gamma

Several approaches compared

- **Orange**: using only data far from the edge (currently limited statistics)
- Blue: increasing the above dataset by random rotation of images
- Green: adding edge part with silver nanoparticles

First test at LNGS

Emulsion Production at LNGS

Current production rate 1kg per week

10g detector test

Designing a larger detector

NEWSdm SENSITIVITY

SENSITIVITY OF A PILOT EXPERIMENT

- 10kg x year experiment
- Zero background assumed
- Directionality not exploited

TOWARDS THE NEUTRINO FLOOR

- Discrimination based on measurement of recoil direction
- Unique possibility to search for WIMP signal beyond "neutrino floor"

Neutrino coherent scattering indistinguishable from WIMP interactions *Phys.Rev.D89 (2014) no.2, 023524 (Xe/Ge target)*

REQUIREMENTS

- Larger mass scale detector
- Reduction of track length threshold

The neutrino bound is reached with: 10 ton x year exposure if 30 nm threshold 100 ton x year exposure if 50 nm threshold

NEWSdm Collaboration Eur.Phys.J. C78 (2018) no.7, 578

CONCLUSION AND PERSPECTIVES

- Nuclear emulsions with nanometric grains pave the way for a directional dark matter search with high sensitivity
- Breakthrough in readout technologies provide 3D and head/tail discrimination with high sensitivity
- Neutron background from intrinsic radioactivity negligible up to ~ 10 kg year, without any care on the material choice
- Machine learning approach to handle the complexity of the information
- Experimental tests ongoing in Gran Sasso to reproduce the full analysis chain
- Prepare a few kg scale detector as a demonstrator of the technology and for the first physics run
- TDR in preparation