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[Planck 2015, 1502.01589]
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SM weak scale SI interactions

tree level,

tree level,
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otill viable under
which conditions?

- real particle
(Majorana, fermion, real scalar)

- hypercharge Y = ()

- 5D interactions only
- inelastic scattering
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~ 9  Just coincidence? Or: signal of a 1link?

Possibly a common production mechanism:

Baryogenesis: ‘Darko’genesis:

ng — N 10 npM — Npy 2
. N~

B

A variety of specific models/ideas:

transferring or co-genesis

DM stores the anti-B number

via leptogenesis .
connection to neutrino masses
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Consider a particle x: NI e
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The relic abundance is determined by 779 and mx.
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Sub-GeV DM

& ‘SIMP miracle’:

DM
scalar DM with relic abundance set by 3 -> & processes o DM
points to Keff DM
DM

mom ~ et (T2, Mp1) ' ~ 100 MeV

‘naturally realized’ in a dark-QCD-like setup



Sub-GeV DM

& ‘MeV (SC&].&I’) DM’ (for the Integral 511 KeV excess?)

In conclusion, scalar Dark Matter particles can be significantly lighter than
a few GeV’s (thus evading the generalisation of the Lee-Weinberg limit for

weakly-interacting neutral fermions) if they are coupled to a new (light) gauge
boson or to new heavy fermions F' (through non chiral couplings
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Sub-GeV DM

¢ ‘simplified (light) DM models’

scalar DM and
hadrophilic
scalar mediator

1 1

. . _
O = 5mEe? — Syymydx® — yndiin,

LD — imx

SN1987a

1073 1072 107! 10°
my [MeV]

scalar DM and
leptophilic
scalar mediator

1 1 1
LD ——mix2 — —miqﬁQ — —yxqubxz — Yeee.

2 2 2

Fifth force

SN1987a
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e

fermionic DM and
vector mediator
(e.g. dark photon)
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an astro je ne saws pas quot: a baryon cftne SM:

- BBN computes the abundance of He in terms

-

- 825 of primordial baryons:
too much baryons => Universe full of Helium
- Black Holss - CMB says baryons are 4% max
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A loophole: Primordial Black Holes!

- produced before BBN
- with masses too small/large to lens
- perhaps LIGO is seeing them?
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Sterile neutrino decay

m, = (.1 KeV

T ~ 10" sec
sin® 20 ~ few 10!
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Sterile neutrino decay

m, = (.1 KeV

T ~ 10" sec
sin® 20 ~ few 10!

Possible challenges:

- EU production?
- Perseus flux too large?
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Sterile neutrino decay

m, = (.1 KeV

T ~ 10" sec
sin® 20 ~ few 10!

Possible challenges:

- EU production?
- Perseus flux too large?

Caveat: |
Riemer-Sgrensen, 1405.7943
- no line seen with Chandra in the Galactic Center (but conclusion depends on how one models the local background)

- no line seen in dSphs (but results are not conclusive) Malyshev et al., 1408.3531
- 10 line seen in other galaxies (but errors might be underestimated? says Boyarskis growp) ~ Anderson et al., 1408.4115

- no line seen in other clusters (but seen in Perseus with Suzaku! maybe it's proper of Perseus?)

: : ; Urban, Strigari et al., 1411.005C
- morphology incompatible with DM  carison, Profumo®, 1411.1758 :

- but seen in Milky Way halo with NuStar, and Chandra! Perhaps reconciled
if it is excited DM %

Neronov, Malyshev, 1607.078:8 ;¢ g Frey. 1410.7766
Cappelluti+ 1701.07932



Sterile neutrino decay

m, = (.1 KeV

T ~ 10" sec
sin® 20 ~ few 10!

Possible challenges:

- EU production?
- Perseus flux too large?

Caveat 2:

- Jeltema & Profumo, 1408.1699: it’s just Potassium/Clorine lines

= Bulbul et al. 1409.4143, Boyarsky at al. 1409.4588: bulls#!t

= Jeltema & Profumo, 1411.1759: insist...



Sterile neutrino decay

m, = (.1 KeV

T ~ 10" sec
sin® 20 ~ few 10!

Possible challenges:

- EU production?
- Perseus flux too large?

Caveat 2:

R . . . g POTASSIUM FLARES
2 . it’s just Potassium/Clorine lines
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5 o The appearance of intense emission lines of neutral potassium at A\ 7665,
e : lnSISt M 7699 on coudé spectrograms of three stars obtained at the Haute-Provence Ob-
servatory has prompted us to conduct a survey of 162 bright stars for emission
at X\ 7699, using a photoelectric scanner. No definite potassium flares were ob-
served. We discuss the advantages of using a scanner for such a survey and for

measuring potassium absorption in late-type dwarfs.
An artificial origin of the emission lines is suggested by the fact that the in-

frared resonance lines of K 1 are by far the strongest features in the spectra of
matches. Experiments at the Lick and Haute-Provence coudé spectrographs
have shown that if a match is struck at certain positions in the coudé room
during the exposure of an infrared spectrogram, the resulting potassium emis-
sion lines can appear very similar to those previously observed.

Introduction




Sterile neutrino decay

m, = (.1 KeV

T ~ 10" sec
sin® 20 ~ few 10!

Possible challenges:

- EU production?
- Perseus flux too large?
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Other possibilities:

axion (1402.7335), axino (1403.1536, 14035.1782, 1405.6621), modulus (1403.1733), ALP (1403.2370),
gravitino (1405.6503), excited DM (1404.4795), the good the bad and the unlikely (1403.1570),
sgoldstino (1404.1339), magnetic DM (1404.5446), majoron (1404.1400), annihilating effective DM
(1404.1927), 7KeV scalar DM (1404.2220)...
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Theoretically motivated:

one can add tothe SM & = % — 0 683 G% G°

DA ]
4 <G EzﬂaﬂG>

which induces d, ~ 6 e m/m{ ~ 107'° 0 ecm

but experimentally |d,| $3 1072° ecm
sowhyis |0] < 107! 2
Perhaps because 6 is dynamical (a field)

and driven to (almost) zero by its potential
(symmetrical under U(1)pq ).

1010 GeV

In this case m, =~ 0.6 meV
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Searches:
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M. Cirelli, A. Strumia, J. Zupan to appear
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