Le leggi del disordine

Dino Leporini
Dipartimento di Fisica "Enrico Fermi", Universita' di Pisa, IPCF-CNR e INFN, Pisa

PhD/Postdoc
(in ordine di apparizione):
Claudio Donati, Cristiano De Michele, Andrea Barbieri, Vasile Bercu, Luca Larini, Alistar Ottochian, Francesco Puosi, Oleksandr Chulkin, Sebastiano Bernini, Mara Barucco, Andrea Giuntoli,

Disordine :

- Disordine nelle velocita'
- Disordine nelle posizioni:
- Liquidi
- Polimeri
- Solidi disordinati (vetri, amorfi)

Disordine nelle velocita': la distribuzione di Maxwell-Boltzmann

$$
f_{M B}(v)=\left(\frac{m}{2 \pi k T}\right)^{3 / 2} \exp \left[-\frac{m v^{2}}{2 k T}\right]
$$

Per una storia dei contrari (Kelvin..), dei cauti (Maxwell...) e degli entusiasti (Clausius...) vedi:
Rowlinson, Mol. Phys. 2005

```
NB:
Le leggi dei
sistemi
disordinati
sono
di natura
statistica
```


Disordine nelle velocita': la distribuzione di Maxwell-Boltzmann

$f_{M B}(v)=\left(\frac{m}{2 \pi k T}\right)^{3 / 2} \exp \left[-\frac{m v^{2}}{2 k T}\right]$

Per una storia dei contrari (Kelvin..), dei cauti (Maxwell...) e degli entusiasti (Clausius...) vedi:
Rowlinson, Mol. Phys. 2005
$f_{M B}$ predetta in sistemi in equilibrio classico, potenziali dipendenti dalla sola posizione e velocita' non relativistiche. Confermata in:

Fluidi (alta mobilita')

NB:

Le leggi dei sistemi
disordinati sono
di natura statistica

Gas ideali

Disordine nelle velocita': la distribuzione di Maxwell-Boltzmann

$$
f_{M B}(v)=\left(\frac{m}{2 \pi k T}\right)^{3 / 2} \exp \left[-\frac{m v^{2}}{2 k T}\right] \quad \begin{aligned}
& \text { Per una storia dei contrari (Kelvin..), } \\
& \text { dei cauti (Maxwell...) e degli entusiasti } \\
& \text { (Clausius...) vedi: } \\
& \text { Rowlinson, Mol. Phys. } 2005
\end{aligned}
$$

$f_{M B}$ predetta in sistemi in equilibrio classico, potenziali dipendenti dalla sola posizione e velocita' non relativistiche. Confermata in:

Fluidi (alta mobilita')

NB:

Le leggi dei sistemi
disordinati sono
di natura statistica

Disordine nelle velocita': la distribuzione di Maxwell-Boltzmann

$$
f_{M B}(v)=\left(\frac{m}{2 \pi k T}\right)^{3 / 2} \exp \left[-\frac{m v^{2}}{2 k T}\right] \quad \begin{aligned}
& \text { Per una storia dei contrari (Kelvin..), } \\
& \text { dei cauti (Maxwell...) e degli entusiasti } \\
& \text { (Clausius...) vedi: } \\
& \text { Rowlinson, Mol. Phys. } 2005
\end{aligned}
$$

$f_{M B}$ predetta in sistemi in equilibrio classico, potenziali dipendenti dalla sola posizione e velocita' non relativistiche. Confermata in:

Fluidi (alta mobilita')

Liquidi

Solidi (mobilita' trascurabile)

Cristalli

NB:

Le leggi dei sistemi
disordinati sono
di natura statistica

Disordine nelle posizioni in liquidi e solidi: assenza di ordine a lungo raggio

Disordine nelle posizioni in liquidi e solidi: assenza di ordine a lungo raggio

Crystalline fcc Au

Disordine nelle posizioni in liquidi e solidi: assenza di ordine a lungo raggio

$d N(r)=4 \pi \rho r^{2} \mathbf{g}(r) d r$
radial distribution function
$\operatorname{Lim}_{r \rightarrow \infty} \mathbf{g}(\mathbf{r})=1$;
homogeneity

Crystalline fcc Au

Ar (liquido) , Ar (vetro)

Disordine nelle posizioni in liquidi e solidi: assenza di ordine a lungo raggio

$$
d N(r)=4 \pi \rho r^{2} \mathbf{g}(r) d r
$$

radial distribution function
$\operatorname{Lim}_{r \rightarrow \infty} \mathbf{g}(\mathbf{r})=1$;
homogeneity

Crystalline fcc Au

NB:

Sistemi
spazialmente disordinati, anche con strutture molto simili possono avere mobilita' molto diverse

Liquidi: autosimilarita' nel tempo e nello spazio (backflow)

Liquidi: autosimilarita' nel tempo e nello spazio (backflow)

Liquidi: autosimilarita' nel tempo e nello spazio (backflow)

Enhanced hydrodynamic anticorrelations driven by Backflow: lab-on-a-chip application

Enhanced hydrodynamic anticorrelations driven by Backflow: lab-on-a-chip application

Franosch et al, Nature 2011

Liquidi: il moto browniano e l’esistenza degli atomi

J. Perrin

Fig. 7.

Liquidi: il moto browniano e l’esistenza degli atomi

J. Perrin

Fig. 7.

A. Einstein

Articoli 1905 (Annus Mirabilis), in ordine di invio:

- Effetto fotoelettrico (Nobel 1921)
- Moto Browniano
- Relativita' speciale
- $\mathrm{E}=\mathrm{mc}^{2}$

Liquidi: il moto browniano e l’esistenza degli atomi

J. Perrin

Fig. 7.

A. Einstein

Articoli 1905 (Annus Mirabilis), in ordine di invio:

- Effetto fotoelettrico (Nobel 1921)
- Moto Browniano
- Relativita' speciale
- $\mathrm{E}=\mathrm{mc}^{2}$
$\left\langle\mathbf{R}^{2}(t)\right\rangle=6 D t$
D: coefficiente di diffusione
η : viscosita'

Liquidi: il moto browniano e l’esistenza degli atomi

J. Perrin

Fig. 7.

A. Einstein

Articoli 1905 (Annus Mirabilis), in ordine di invio:

- Effetto fotoelettrico (Nobel 1921)
- Moto Browniano
- Relativita' speciale
- $\mathrm{E}=\mathrm{mc}^{2}$

$$
\begin{array}{cl}
\left\langle\mathbf{R}^{2}(t)\right\rangle=6 D t & \begin{array}{l}
\text { D: coefficiente di diffusione } \\
\eta: \text { viscosita' }
\end{array} \\
k_{B}=6 \pi a \frac{D \eta}{T} & \text { Legge di Stokes-Einstein }
\end{array}
$$

Liquidi: il moto browniano e l’esistenza degli atomi

J. Perrin

Fig. 7.
g. 7.

Costante di Boltzmann
$\left\langle\mathbf{R}^{2}(t)\right\rangle=6 D t$
D: coefficiente di diffusione η : viscosita'

A. Einstein

Articoli 1905 (Annus Mirabilis), in ordine di invio:

- Effetto fotoelettrico (Nobel 1921)
- Moto Browniano
- Relativita' speciale
- $\mathrm{E}=\mathrm{mc}^{2}$
$k_{B}=6 \pi a \frac{D \eta}{T}$
Legge di Stokes-Einstein

Liquidi: il moto browniano e l’esistenza degli atomi

J. Perrin

Fig. 7.

Jean Baptiste Perrin, The Nobel
Prize in Physics 1926
"for his work on the discontinuous structure of matter..."

During the 1880s atoms and molecules became important scientific concepts, but whether or not they actually had a physical existence was still a matter of dispute. Jean Perrin maintained that if molecules were real, particles blended into a liquid should not all sink to the bottom but should distribute themselves throughout the liquid. In 1908 he could substantiate this through experimentation. He also substantiated Albert Einstein's theory that Brownian motion - the random movement of small particles in a liquid - was due to collisions between the particles and molecules in the liquid. (Source:
https://www.nobelprize.org/prizes/physics/1926/summary/)

$\left\langle\mathbf{R}^{2}(t)\right\rangle=6 D t$
Costante di Boltzmann

- Moto Browniano
- Relativita' speciale
- $\mathrm{E}=\mathrm{mc}^{2}$

$$
k_{B}=6 \pi a \frac{D \eta}{T}
$$

A. Einstein

Articoli 1905 (Annus Mirabilis), in ordine di invio:

- Effetto fotoelettrico (Nobel 1921)

D: coefficiente di diffusione
η : viscosita'
Legge di Stokes-Einstein

Sondaggi (ventennali)....

Domanda: conosci Perrin ?

J. Perrin

Sondaggi (ventennali)....

Domanda: conosci Perrin ?

Domanda: sai come/quando e' stata provata l’esistenza degli atomi ?

Polimeri: analogia con il moto browniano

Fig. 7.

Kevlar:
Polimero poliaramide "bio-inspired" dalla tela dei ragni

Analogia tra moto browniano e polimeri lineari:

 quale moto browniano ?
RW

$\left\langle R^{2}\right\rangle \propto N$

Analogia tra moto browniano e polimeri lineari:

 quale moto browniano ?
$\left\langle R^{2}\right\rangle \propto N$
$\left\langle R^{2}\right\rangle \propto N^{6 / 5}$

Globulo

$\left\langle R^{2}\right\rangle \propto N^{2 / 3}$

Transizione "coil-globule" di singola catena: un esempio di transizione disordine-disordine

Transizione "coil-globule" di singola catena: un esempio di transizione disordine-disordine

Transizione "coil-globule" di singola catena : analogia con la denaturazione delle proteine

L' ovalbumina, se riscaldata, diventa insolubile

Il disordine semplifica la vita: polimeri come RW se ad alta concentrazione in buon solvente

Il disordine semplifica la vita: polimeri come RW se ad alta concentrazione in buon solvente

In soluzioni polimeriche ad alta concentrazione si verifica la mutua cancellazione degli opposti effetti di:

- Volume escluso
- Pressione osmotica

Bohn, Heermann 2018

Il disordine semplifica la vita: polimeri come RW se ad alta concentrazione in buon solvente

In soluzioni polimeriche ad alta concentrazione si verifica la mutua cancellazione degli opposti effetti di:

- Volume escluso
- Pressione osmotica

- Pressione osmotica \longrightarrow

Bohn, Heermann 2018

II disordine semplifica la vita: polimeri come serpenti in un tubo se ad alta concentrazione

Il disordine semplifica la vita: polimeri come serpenti in un tubo se ad alta concentrazione

Il disordine semplifica la vita: polimeri come serpenti in un tubo se ad alta concentrazione

Solidi disordinati (vetri): non-affinita' e disomogeneita' elastica
 $$
\mathbf{R}=\mathbf{R}_{0}+\mathbf{u}
$$

Deformazione affine (omogenea)

$$
\left\{\begin{array}{l}
u_{x}=\gamma y \\
u_{y}=0
\end{array}\right.
$$

Solidi disordinati (vetri): non-affinita' e disomogeneita' elastica
 $$
\mathbf{R}=\mathbf{R}_{0}+\mathbf{u}
$$

Deformazione affine (omogenea)

$$
\left\{\begin{array}{l}
u_{x}=\gamma y \\
u_{y}=0
\end{array}\right.
$$

Deformazione non-affine (disomogenea)

$$
\left\{\begin{array}{l}
u_{x}=\gamma y \\
u_{y}=
\end{array}\right.
$$

Solidi disordinati (vetri): non-affinita' e disomogeneita' elastica
 $$
\mathbf{R}=\mathbf{R}_{0}+\mathbf{u}
$$

Mappa della deformazione non affine Vortici ! Come nella turbolenza...

Deformazione non-affine (disomogenea)

Solidi disordinati (vetri): non-affinita' e disomogeneita' elastica
 $$
\mathbf{R}=\mathbf{R}_{0}+\mathbf{u}
$$

[^0]Deformazione non-affine (disomogenea)

$$
\left\{\begin{array}{l}
u_{x}=\gamma y \\
u_{y}=
\end{array}\right.
$$

Solidi disordinati (vetri): modi vibrazionali acustici e disomogeneita' elastica

Mappa del modulo elastico locale di PdCuSi (microscopia AFM)

Distribuzione modi acustici $g(f)$

Cristallo

Solidi disordinati (vetri): modi vibrazionali acustici e disomogeneita' elastica

Mappa del modulo elastico locale di PdCuSi (microscopia AFM)

Distribuzione modi acustici $g(f)$

Cristallo

Solidi disordinati (vetri): modi vibrazionali acustici e disomogeneita' elastica

Mappa del modulo elastico locale di PdCuSi (microscopia AFM)

Distribuzione modi acustici $g(f)$

Cristallo

[^1]$\mathrm{f} \sim 1 \mathrm{THz} \rightarrow \lambda \sim 1 \mathrm{~nm}$. Domanda: Il vetro é omogeneo come un cristallo sulla scala di $\sim 1 \mathrm{~nm}$?

Solidi disordinati (vetri): modi vibrazionali acustici e disomogeneita' elastica

No, se il vetro e' a "bassa connettivita""

Distribuzione modi acustici $g(f)$

$\mathrm{f} \sim 1 \mathrm{THz} \rightarrow \lambda \sim 1 \mathrm{~nm}$. Domanda: Il vetro e' omogeneo come un cristallo sulla scala di $\sim 1 \mathrm{~nm}$?

Solidi disordinati (vetri): modi vibrazionali acustici e disomogeneita' elastica

"Boson peak" -> eccesso di modi a bassa frequenza ("soffici") rispetto ai cristalli -> instabilita', dissipazione e plasticita' Presenza di modi soffici

Assenza di modi soffici

Distribuzione modi acustici $g(f)$

Perche' me ne devo preoccupare ?

Vetro

Cristallo

Solidi disordinati (vetri): modi vibrazionali acustici e disomogeneita' elastica

"Boson peak" -> eccesso di modi a bassa frequenza ("soffici") rispetto ai cristalli -> instabilita', dissipazione e plasticita'
Presenza di modi soffici

Assenza di modi soffici

Perche' me ne devo preoccupare ?
Distribuzione modi acustici g(f)

Solidi disordinati (vetri): modi vibrazionali acustici e disomogeneita' elastica

"Boson peak" -> eccesso di modi a bassa frequenza ("soffici") rispetto ai cristalli -> instabilita', dissipazione e plasticita' di (") rispetro ai cristali -> instabilia', dissipazione e plasticia'

Distribuzione modi acustici $g(f)$

Evento plastico quadrupolare
F. Puosi et al, PRE 2014

Valanga di eventi plastici
F. Puosi (unpublished)

Interferometro VIRGO per la rivelazione di onde gravitazionali

Interferometro VIRGO per la rivelazione di onde gravitazionali

INFN

Beam splitter ($34 \mathrm{~kg}, 55 \mathrm{~cm} \varnothing$)

Interferometro VIRGO per la rivelazione di onde gravitazionali

Obiettivo:
Spettroscopia dinamico-meccanica in-silico per la riduzione del rumore termico negli specchi (solidi disordinati) dell' interferometro
F. Puosi, DL, S. Capaccioli, D. Pisignano and F. Fidecaro

Interferometro VIRGO per la rivelazione di onde gravitazionali

Beam splitter ($34 \mathrm{~kg}, 55 \mathrm{~cm}$ ø)

Obiettivo:
Spettroscopia dinamico-meccanica in-silico per la riduzione del rumore termico negli specchi (solidi disordinati) dell' interferometro

Deformazione di $\mathrm{Ta}_{2} \mathrm{O}_{5}$

Conclusioni:

- Il disordine é regolato da leggi di natura statistica,

Conclusioni:

- Il disordine e' regolato da leggi di natura statistica,
- La dinamica di un sistema disordinato dipende poco dai dettagli spaziali a piccola scala -> universalita' approssimate,

Conclusioni:

- Il disordine é regolato da leggi di natura statistica,
- La dinamica di un sistema disordinato dipende poco dai dettagli spaziali a piccola scala -> universalita' approssimate,
- Le leggi talora si semplificano all' aumentare della complessita' del sistema disordinato (Nobel Fisica 91),

Conclusioni:

- Il disordine é regolato da leggi di natura statistica,
- La dinamica di un sistema disordinato dipende poco dai dettagli spaziali a piccola scala -> universalita' approssimate,
- Le leggi talora si semplificano all' aumentare della complessita' del sistema disordinato (Nobel Fisica 91),
- Il disordine presenta:
- talvolta proprieta' di scala tra mondo macroscopico e microscopico (ad es. backflow, risposta elastica in vetri ad "alta connettivita'")
- altre volte no (ad es. risposta elastica in vetri "poco connessi") con varie forme di eterogeneita' (ad es. elastica)

Conclusioni:

- Il disordine é regolato da leggi di natura statistica,
- La dinamica di un sistema disordinato dipende poco dai dettagli spaziali a piccola scala -> universalita' approssimate,
- Le leggi talora si semplificano all' aumentare della complessita' del sistema disordinato (Nobel Fisica 91),
- Il disordine presenta:
- talvolta proprieta' di scala tra mondo macroscopico e microscopico (ad es. backflow, risposta elastica in vetri ad "alta connettivita'")
- altre volte no (ad es. risposta elastica in vetri "poco connessi") con varie forme di eterogeneita' (ad es. elastica)
- I sistemi disordinati:
- Aiutano a scoprire l’esistenza degli atomi,
- Danno una mano a cercare onde gravitazionali.

Kó $\boldsymbol{\sigma} \boldsymbol{\mu}$ с (kósmos) : ordine, universo (Pitagora)

*. Scala microscopica: ordine

* Scala meso- e macro-scopica: disordine (passaggio graduale)
> Statistica
- Multiscala (lunghezza, tempo):
- Correlazioni tra scale causati da vincoli, moti cooperativi -> Autosimilarita', autoaffinita'
- Correlazioni spaziali: impaccamento
- Correlazioni temporali: polimeri (esistono modi come in teoria piccole oscillazioni o cristallo armonico?)
- Isteresi: dipendenza dalla storia: fuori equilibrio, memoria (elasticita'), perdita di memoria (viscosita')
- Viscoelasticita'

Deterministic fractal: curva di Koch

$$
\begin{aligned}
& R=n^{\alpha} \\
& \alpha=\log 3 / \log 4 \sim 0.79
\end{aligned}
$$

Statistical fractal : self-avoiding random walk

$$
\begin{aligned}
& <R^{2}>^{1 / 2}=\mathrm{n}^{\alpha} \\
& \alpha=3 / 5=0.6
\end{aligned}
$$

Moto browniano, Einstein, Perrin e l’esistenza degli atomi

J. Perrin, 1912
73. Parfaite irrégularité de l'agitation.

Einstein (1905)
$\mathrm{k}_{\mathrm{B}}=6 \pi \mathrm{aD} \eta / \mathrm{T}$
$\left\langle\Delta r^{2}\right\rangle=6 \mathrm{Dt}$

During the 1880s atoms and molecules became important scientific concepts, but whether or not they actually
During the 1880s atoms and molecules became important scientific concepts, but whether or not they a
particles blended into a liquid cheat not all sink to the bottom but should distribute themselves throughout the liquid. In 1908 ltcould substantiate this through experimentation. He also substantiated Albert Einstein's theory that Brownian motion - the random movement of small particles in a liquid - was due to collisions between the particles and molecules in the liquid. (Source: https://www.nobelprize.org/prizes/physics/1926/summary/)

Liquidi: il moto browniano

73. Parfaite irrégularité de l'agitation
J. Perrin, 1912

$$
\begin{aligned}
& \text { Traiettoria } \\
& \text { reale }
\end{aligned}
$$

Traiettoria campionata

Transizione "coil-globule" di singola catena: un esempio di transizione disordine-disordine

poly(2-vinylpyridine) su mica in soluzione acquosa
Roiter and Minko, JACS 2005

Transizione "coil-globule" di singola catena : analogia con la denaturazione delle proteine

L' ovalbumina, se riscaldata, diventa insolubile

Transizione "coil-globule": analogia con la denaturazione delle proteine

Polistirene in cicloesano

Proteina Folded: Proteina Unfolded: funziona non funziona

L' albumina, se riscaldata, diventa insolubile

[^0]: Wagner et al, Nature Mat 2011

[^1]: Wagner et al, Nature Mat 2011

