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Scale invariance in physics (part I)

I Property of systems where there are no scales. Can
occur at low and high energies

(iγµ∂µ + m)ψ = 0
E�m−→ iγµ∂µψ = 0 ,

∂2ψ + m2ψ = 0
E�m−→ i∂tψ +

1

2m
~∂2ψ = 0 .

I Well known scale transformations:

Galilean : t 7→ Λ2t , x 7→ Λx ,

relativistic : t 7→ Λt , x 7→ Λx .

I Important for renormalisation group where fixed points
are scale invariant.
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Scale invariance in physics (part II)

I More general scale transformation:

anisotropic/Lifshitz : t 7→ Λz t , x 7→ Λx ,

where “z” is called the dynamical critical exponent.
I Found in multiple physical systems:

I Multicritical points of certain materials.1

I Strongly correlated electron systems.2

I More speculatively these symmetries may be relevant
for particle physics3 and quantum gravity.4

1Hornreich, Luban, and Shtrikman 1975; Grinstein 1981.
2Fradkin et al. 2004; Vishwanath, Balents, and Senthil 2004; Ardonne, Fendley, and Fradkin 2004.
3Alexandre 2011.
4Reuter 1998; Kachru, Liu, and Mulligan 2008; Horava 2009b,a; Gies et al. 2016.
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Scale anomalies in low energy effective theories

I Two simple examples

ĤD = γ0γj p̂j −
λ

r
, ĤS =

p̂2

2m
− λ

r2
. (1)

models for e.g. nuclear physics,5 Aharonov-Bohm6 and
graphene7 with a charged impurity.

I Boundary conditions break scale invariance → bound
states.

I λ < λc : continuous scale invariance (CSI) at low
energies.

I λ > λc : residual discrete scale invariance (DSI)

r 7→ e−
2π
ν r E = E0e

− 2πn
ν , n ∈ Z . (2)

5Efimov 1970; Efimov 1971; Braaten and Hammer 2006.
6Jackiw and Pi 1990; Bergman and Lozano 1994.
7Ovdat et al. 2017.
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Some questions...

1. What do theories with Lifshitz scale invariance look like?

2. When is the scale symmetry anomalous?

3. What are the consequences of such an anomaly?
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Scale covariant Hamiltonians and boundary
conditions

I Question: what is the spectrum of a
scale invariant Hamiltonian?

I Consider Hamiltonians

ĤN = p̂2N +
2N∑
i=1

λi
r i
d2N−i
r ,

ĤN → Λ−2NĤN .

I Requires regularisation due to
singularities.

I Hard cut-off (r = L) implies
vanishing probability current at wall.
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Self-adjoint boundary conditions

I Probability current is a
bilinear form and can be
diagonalised for boundary
conditions.

I Conditions for vanishing
of current

~Ψ+(L) = UN
~Ψ−(L) .

I Compute energy levels
and find a (low energy)
CSI to DSI transition.

U2 =
1 0

0 -ⅈ

2 4 6 8 10
λ2

5

10

15

-ln(ϵ)

n

(
d4
r −

λ2

r4

)
Ψ(r) = −ε4Ψ(r)
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Deriving the renormalisation group (RG) equation

I Question: As L changes can we keep a given state in
the spectrum?

~Ψ+(L) = UN(L)~Ψ−(L) .

I Ans: Yes. Boundary condition must change as:

0 = [LdLUN(L)− C+− + UN(L)C−− − C++UN(L)

+UN(L)C−+UN(L)] ~ψ−(L) . (3)

I For EL2N � 1, the equation is translationally invariant8

− iLU−1
N dLUN = iC−− − iU−1

N C+− + iC−+UN

−iU−1
N C++UN . (4)

8Mueller and Ho 2004; Camblong et al. 2000; Kaplan et al. 2009.
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The end of RG flow

I There are many ways for an RG
flow to end9.

I DSI for ĤS = d2
r − λ2/r

2

shown to imply limit cycle
behaviour10.

I First example of an isolated
limit cycle in quantum theory.

I New types of flow suggested:
limit tori.

I Energy spectra for limit tori
mildly displaced from a limit
cycle.

××

U2 =
cos(θ) -sin(θ)

sin(θ) cos(θ)

-1.0 -0.5 0.5 1.0 1.5
Re(U11)

-1.0
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0.0
0.5
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9Wilson and Kogut 1974; Cambel 1993.
10Braaten and Phillips 2004; Kolomeisky and Straley 1992.
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Summary

Conditions on {∆i} Characteristic RG picture

all roots on symmetry line
(Re [z] = N − 1/2)

Im [∆i ] / Im
[
∆j

]
∈ Q Many limit cycles with DSI

Im [∆i ] / Im
[
∆j

]
/∈ Q Many limit tori

some roots off the symmetry line
(Re [z] = N − 1/2)

for Re [∆i ] = N − 1/2 if
Im [∆i ] / Im

[
∆j

]
∈ Q

Isolated limit cycles with
DSI

for Re [∆i ] = N − 1/2 if
Im [∆i ] / Im

[
∆j

]
/∈ Q

Isolated limit torus

no roots on symmetry line
(Re [z] = N − 1/2)

2N fixed points

I Question: what happens when L→ 0? Ans: Zero
modes, ψ ∼ r∆.

I Presence of DSI can be determined from zero mode
power laws.

I DSI to CSI transitions are a feature of local scale
invariance.

I They result in geometric towers of energy and RG flow
limit cycles.
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Supersymmetry to the rescue?

I Question: superconformal inverse square potential is
scale invariant. Is this true for anisotropic scale
invariance?

I Relevant to e.g. novel forms of supersymmetry
breaking11 and black hole physics.12

I Want to write ĤN = ĥ
(b)
N = q̂†N q̂N .

I Ability to do this encoded in zero modes of ĥ
(b)
N :

ĥ
(b)
N ψ(r) = 0 ⇒ ψ(r) ∼ r∆ . (5)

I Define a new superpartner Hamiltonian: ĥ
(f)
N = q̂N q̂

†
N .

11Falomir and Pisani 2005.
12Okazaki 2015.
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N = 2 formalism

I Define formally self-adjoint supercharges:

Q̂+
N =

(
0 q̂†N
q̂N 0

)
, Q̂−N =

(
0 −i q̂†N

i q̂N 0

)
.

I These give the super-Hamiltonian:

ĤN =
(
Q̂+

N

)2
=

(
Q̂−N

)2
=

(
ĥ

(b)
N 0

0 ĥ
(f)
N

)
,[

ĤN , Q̂
±
N

]
= 0 .

I Now make sure Q̂±N is self-adjoint:∫ ∞
r=L

dr

[
~Φ†(r)Q̂+

N
~Ψ(r)−

(
Q̂+

N
~Φ(r)

)†
~Ψ(r)

]
. (6)
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Results of supersymmetrisation

I Self-adjoint extensions
restricted to U2

m = 1m.

I Bound state spectrum is empty
as 〈Ψ|Ĥ|Ψ〉 ≥ 0.

I However, quasi-bound states
appear in spectrum unless Um

is diagonal.

I Uppermost image is a
Hamiltonian with real power
laws for the zero modes.
Lowermost has complex modes
and a geometric tower.

××

U2 = 
0 1
1 0



-4 -2 0 2 4

-4

-2

0

2

ln Re [k ]

ln
Im

[k
]

×

×

×

×

×

×

×

U2 = 
0 1
1 0



-4 -2 0 2 4

-4

-2

0

2

4

ln Re [k ]

ln
Im

[k
]
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Onward to fields...

I Question: having considered non-local linear
interactions, what about local non-linear interactions?

I Primarily interested in introducing interactions to the
free field theory

L =
i

2
(φ∗∂tφ− ∂tφ∗φ)− 1

2m
|~∂2φ|2 . (7)

I Quartic dispersion relations (ε ∼ ~p4)
I ultracold gases with shaken optical lattices,13

I fermions in biased bilayers of graphene,14

I heavy fermion metals.15

13Miao, Liu, and Zheng 2015; Radić, Natu, and Galitski 2015; Po and Zhou 2015; Wu, Zhou, and Wu
2017.

14McCann and Koshino 2013.
15Ramires et al. 2012.
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Schrödinger scalar with |φ|4 - a historical review

I Compare our theory of interest to well known action

L =
i

2
(φ∗∂tφ− ∂tφ∗φ)− 1

2m
|~∂φ|2 − λ

4
|φ|4 . (8)

I Known features:

1. classically has Schrödinger conformal symmetry and
2. this is broken at quantum level to give a bound state of

two particles.

I Differences to our field theory:

1. ours has scale but no conformal invariance,
2. there are many more permissible interactions,
3. one of which is exactly marginal and
4. there is a bound state of three particles.



Anisotropic scale
invariance

A brief review of
scale invariance

Quantum
mechanics

Cut-offs, self-adjoint
boundary conditions and
energy spectra

Renormalisation group flow
of boundary conditions

Self-adjoint extensions

The importance of zero
modes

Supersymmetrisation

QFT

Free theory

Interactions

Future projects

Coupling to a gauge field

Non-zero temperature

Fractional quantum
mechanics

Free theory

I Question: what is the most general, scale invariant
action with Lifshitz symmetry?

I The classical Hamiltonian density H is

1

2m

∣∣∣~∂2φ+ ζ4|φ|2φ
∣∣∣2 + λ4|φ|2|~∂φ|2

+
1

3!2

(
λ6 −

3!2|ζ4|2

2m

)
|φ|6 . (9)

I Free propagator

GF (r , t) = −iθ(t)

∫ ∞

0

d‖~k‖
(2π)

‖~k‖J0(‖~k‖r)e
i
(

~k4

2m t
)
. (10)

I Spatial correlator〈
0|[φ(t, ~x), φ†(t, ~y)]|0

〉
∼ δ(‖~x − ~y‖)

‖~x − ~y‖
. (11)
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Exact two-point function

Charge conservation violating Vanishes under normal ordering

I The bare propagator takes the form

Γ2
B(~p, ε) = ε− 1

2m
~p4 − Σ(~p, ε)− Π(~p, ε) . (12)

I Thus the exact 1PI-propagator is

Γ2
R(~p, ε) = ε− 1

2m
~p4 . (13)
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2-body interactions - part I

ε, ~p

Ω− ε, ~P − ~p

λ4
~P2 λ4

~P2 .

I Need to evaluate∫ Λ̃ dxdθ

(2π)2

x

1− (X 2
2 − 2X2x cos(θ) + x2)2 − x4 + iε

(14)

where x = ‖~p‖/(2mΩ)1/4, Λ̃ = Λ/(2mΩ)1/4.
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2-body interactions - part II

I Resum

−iΓ1PI
4 =

−iλ4P
2

1 + 2miλ4X 2
2 I1(X2)

= P2f

(
Ω

P4

)
. (15)

I Lifshitz scaling allows for a non-trivial dependence on
the kinematic parameter - unlike relativistic and
Schrödinger cases.

I The other two body interaction is not so pleasant →
logarithmic and quadratic divergences.

I Logarithmic term introduces a scale.
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3-body interactions and bound states

.

I Hard to evaluate even numerically. Zero ~P:∫
d2x1I1(x1) ∼ ln Λ (16)

I Resum six-point function

Γ1PI
6

∣∣
~P=~0

=
λ̃

1 + mλ̃
3!π

(
1

32 ln
(
− Λ4

2mΩ

)
− Re[φ]

) (17)

Bound state: Ω = − Λ4

2m exp
((

192
mλ̃

)
π − 32 Re[φ]

)
.
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Summary

I Unlike the Schrödinger theory there is an exactly
marginal deformation for the z = 4 Lifshitz theory

Vint. ∼ λ4|φ|2‖~∂φ‖2 (18)

I We expect this to extend to general “z” for a scalar.
However, fermion interaction depends on relative
momentum across vertex.

I We conjecture that there are bound states of
(N + 1)-particles for the polynomial interaction in a
Lifshitz theory with z = 2N.
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Lifshitz anyons and the Aharonov-Bohm effect

I Problem: realisable potentials given by external gauge
field

S =

∫
ddxdt

i

2
(Ψ∗DtΨ− (DtΨ)∗Ψ) + ‖ ~DΨ‖2N (19)

with Dµ = ∂µ − ieAext
µ .

I A solution: couple to Chern-Simon’s.16

I Extensions:
I Non-abelian gauge fields.
I Competition with anyonic superfluidity.
I Identification of anomaly coefficients?

16Bergman 1994.
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While we are on the subject - supersymmetric
field theory...

I (2 + 1)-dimensional supersymmetric Schrödinger theory
has two types of supersymmetry

kinematic :
{
q̂, q̂†

}
= N̂boson + N̂fermion ,

dynamical :
{
Q̂, Q̂†

}
= Ĥ .

I Combine to give a type of N = 2 SUSY with spatial
momentum being a central charge → supersymmetric
BPS vortices17 → quantum Hall effect.

I Question: is there a similar phenomenon for Lifshitz
scaling symmetry?

I Problem: central charge ∼ PN which is a non-linear
operator.

17Tong and Turner 2015.
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Thermal partition functions, thermal corrections
and the Casmir effect

I Problem: what are the finite
temperature consequences of the
QCP transition?
I Mutual fixed point annihilation at

T = 0 gives BKT-like transition.
I Application: may be responsible

from transition18 in QED3. New
phase19 ?

I Virial expansion and Tan contact
term20 .

I Need λ ∼ λ(T ).

18Coleman and Schofield 2005.
19Herbut 2016.
20Ordonez 2016.
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Fractional quantum mechanics

I Problem: more types of scale invariance in quantum
theory than represented by integer powers e.g.[

(−∆)
α
2 + V (r)

]
ψ(~r) = Eψ(~r) . (20)

Is there DSI for these systems?
I Inherently non-local test on behaviour of CSI to DSI

transitions.
I Can occur in systems where m(~k) ∼ kα.

I Solution:
I Attempt to generalise general solutions to equation of

motion (hard).
I Multi-fractional spacetime21 approach.

21Calcagni 2012.
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Thanks for listening!
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