When space and time are not on equal footing

Anisotropic scale invariance

Daniel K. Brattan¹

¹Istituto Nazionale di Fisica Nucleare - Sezione di Genova Via Dodecaneso, 33 - 16146 - Genova - Italy

nisotropic scale invariance

A brief review of scale invariance

Quantum mechanics

Cut-offs, self-adjoint boundary conditions and energy spectra

Renormalisation group flow of boundary conditions Self-adjoint extensions

modes

Supersymmetrisation

QFT

ree theory

uture projects

oupling to a gauge field on-zero temperature Property of systems where there are no scales. Can occur at low and high energies

$$(i\gamma^{\mu}\partial_{\mu} + m) \psi = 0 \quad \stackrel{E \gg m}{\longrightarrow} \quad i\gamma^{\mu}\partial_{\mu}\psi = 0 ,$$

$$\partial^{2}\psi + m^{2}\psi = 0 \quad \stackrel{E \ll m}{\longrightarrow} \quad i\partial_{t}\psi + \frac{1}{2m}\vec{\partial}^{2}\psi = 0 .$$

► Well known scale transformations:

Galilean:
$$t \mapsto \Lambda^2 t$$
, $x \mapsto \Lambda x$, relativistic: $t \mapsto \Lambda t$. $x \mapsto \Lambda x$.

► Important for renormalisation group where fixed points are scale invariant.

A brief review of scale invariance

Quantum mechanics

Cut-offs, self-adjoint boundary conditions and energy spectra

Renormalisation group flow of boundary conditions Self-adjoint extensions

The importance of zer

Supersymmetrisation

QFT

ree theory

Future projects

More general scale transformation:

anisotropic/Lifshitz: $t \mapsto \Lambda^z t$, $x \mapsto \Lambda x$,

where "z" is called the dynamical critical exponent.

- Found in multiple physical systems:
 - Multicritical points of certain materials.¹
 - ► Strongly correlated electron systems.²
- More speculatively these symmetries may be relevant for particle physics³ and quantum gravity.⁴

Quantum mechanics

mecnanics Cut-offs, self-adjoint

energy spectra

Renormalisation group flow of boundary conditions

he importance of zero

Supersymmetrisation

QF٦

Free theory

Future projects

A brief review of scale invariance

¹Hornreich, Luban, and Shtrikman 1975; Grinstein 1981.

²Fradkin et al. 2004; Vishwanath, Balents, and Senthil 2004; Ardonne, Fendley, and Fradkin 2004.

³Alexandre 2011.

⁴Reuter 1998; Kachru, Liu, and Mulligan 2008; Horava 2009b,a; Gies et al. 2016.

Scale anomalies in low energy effective theories

► Two simple examples

$$\hat{H}_D = \gamma^0 \gamma^j \hat{p}_j - \frac{\lambda}{r} , \qquad \hat{H}_S = \frac{\hat{p}^2}{2m} - \frac{\lambda}{r^2} . \tag{1}$$

models for e.g. nuclear physics,⁵ Aharonov-Bohm⁶ and graphene⁷ with a charged impurity.

- ▶ Boundary conditions break scale invariance → bound states.
- $\lambda < \lambda_c$: continuous scale invariance (CSI) at low energies.
- $\lambda > \lambda_c$: residual discrete scale invariance (DSI)

$$r\mapsto e^{-\frac{2\pi}{\nu}}r \qquad E=E_0e^{-\frac{2\pi n}{\nu}}, \qquad n\in\mathbb{Z}.$$
 (2)

A brief review of scale invariance

Quantum mechanics

Cut-offs, self-adjoint boundary conditions and energy spectra Renormalisation group flow

Self-adjoint extensions

The importance of zero modes

modes Supersymmetrication

QFT

ree theory

Future projects

⁵Efimov 1970; Efimov 1971; Braaten and Hammer 2006.

⁶ Jackiw and Pi 1990; Bergman and Lozano 1994.

⁷Ovdat et al. 2017.

A brief review of scale invariance

Quantum mechanics

Cut-offs, self-adjoint boundary conditions and energy spectra

of boundary conditions

Self-adjoint extensions

The importance of zero

modes

Supersymmetrisation

QFT

Free theory

Interactions

Future projects

- 1. What do theories with Lifshitz scale invariance look like?
- 2. When is the scale symmetry anomalous?
- 3. What are the consequences of such an anomaly?

invariance

A brief review of scale invariance

Quantum mechanics

Cut-offs, self-adj boundary condit

Renormalisation group of boundary conditions Self-adjoint extensions

The importance of ze

Modes Supersymmetrication

QFT

Free theory

Future projects

- Question: what is the spectrum of a scale invariant Hamiltonian?
- Consider Hamiltonians

$$\hat{H}_{N} = \hat{p}^{2N} + \sum_{i=1}^{2N} \frac{\lambda_{i}}{r^{i}} d_{r}^{2N-i} ,$$

$$\hat{H}_{N} \rightarrow \Lambda^{-2N} \hat{H}_{N} .$$

- Requires regularisation due to singularities.
- ► Hard cut-off (r = L) implies vanishing probability current at wall.

- Probability current is a bilinear form and can be diagonalised for boundary conditions.
- Conditions for vanishing of current

$$\vec{\Psi}^+(L) = U_N \vec{\Psi}^-(L) \; .$$

 Compute energy levels and find a (low energy)
 CSI to DSI transition.

A brief review of scale invariance

Quantum mechanics

Cut-offs, self-a

energy spectra
Renormalisation group flow of boundary conditions

The importance of zer

Supersymmetrisatio

QFT

ree theory

Future projects

Deriving the renormalisation group (RG) equation

▶ **Question:** As *L* changes can we keep a given state in the spectrum?

$$\vec{\Psi}^+(L) = U_N(L)\vec{\Psi}^-(L) \; .$$

▶ Ans: Yes. Boundary condition must change as:

$$0 = [Ld_{L}U_{N}(L) - C_{+-} + U_{N}(L)C_{--} - C_{++}U_{N}(L) + U_{N}(L)C_{-+}U_{N}(L)]\vec{\psi}^{-}(L).$$
(3)

▶ For $EL^{2N} \ll 1$, the equation is translationally invariant⁸

$$-iLU_{N}^{-1}d_{L}U_{N} = iC_{--} - iU_{N}^{-1}C_{+-} + iC_{-+}U_{N}$$
$$-iU_{N}^{-1}C_{++}U_{N}.$$
(4)

Quantum mechanics

Cut-offs, self-adjoint boundary conditions

Renormalisation group floo of boundary conditions Self-adjoint extensions

The importance of zero modes

nodes Supersymmetrisation

QFT

ee theory

teractions

Future projects

A brief review of scale invariance

⁸Mueller and Ho 2004; Camblong et al. 2000; Kaplan et al. 2009.

- ► There are many ways for an RG flow to end⁹.
- ▶ DSI for $\hat{H}_S = d_r^2 \lambda_2/r^2$ shown to imply limit cycle behaviour¹⁰.
- First example of an isolated limit cycle in quantum theory.
- New types of flow suggested: limit tori.
- Energy spectra for limit tori mildly displaced from a limit cycle.

A brief review of scale invariance

Quantum mechanics

Cut-offs, self-adjo

Renormalisation group floo of boundary conditions Self-adjoint extensions

The importance of zer modes

Supersymmetrisation

QFT

ree theory

Future projects

⁹Wilson and Kogut 1974; Cambel 1993.

¹⁰Braaten and Phillips 2004; Kolomeisky and Straley 1992.

Conditions on $\{\Delta_i\}$		Characteristic RG picture
all roots on symmetry line $(Re[z] = N - 1/2)$	$\operatorname{Im}\left[\Delta_{i}\right]/\operatorname{Im}\left[\Delta_{j}\right]\in\mathbb{Q}$	Many limit cycles with DSI
	$\operatorname{Im}\left[\Delta_{i}\right]/\operatorname{Im}\left[\Delta_{j}\right]\notin\mathbb{Q}$	Many limit tori
some roots off the symmetry line	for Re $[\Delta_i] = N - 1/2$ if	Isolated limit cycles with
(Re[z] = N - 1/2)	$\operatorname{Im}\left[\Delta_{i}\right]/\operatorname{Im}\left[\Delta_{i}\right]\in\mathbb{Q}$	DSI
	for Re $[\Delta_i] = N - 1/2$ if	Isolated limit torus
	$\operatorname{Im}\left[\Delta_{i}\right]/\operatorname{Im}\left[\Delta_{j}\right]\notin\mathbb{Q}$	
no roots on symmetry line		2 ^N fixed points
(Re[z] = N - 1/2)		

- ▶ **Question:** what happens when $L \rightarrow 0$? **Ans:** Zero modes, $\psi \sim r^{\Delta}$.
- Presence of DSI can be determined from zero mode power laws.
- ▶ DSI to CSI transitions are a feature of local scale invariance.
- ► They result in geometric towers of energy and RG flow limit cycles.

A brief review of scale invariance

Quantum mechanics

boundary conditions and energy spectra

Renormalisation group flow

Self-adjoint extensions

The importance of zero

nodes

Supersymmetrisation

QFT

ree theory

Future projects

▶ Question: superconformal inverse square potential is scale invariant. Is this true for anisotropic scale invariance?

- Relevant to e.g. novel forms of supersymmetry breaking¹¹ and black hole physics.¹²
- Nant to write $\hat{H}_N = \hat{h}_N^{(b)} = \hat{q}_N^{\dagger} \hat{q}_N$.
- Ability to do this encoded in zero modes of $\hat{h}_{kl}^{(b)}$:

$$\hat{h}_{N}^{(\mathrm{b})}\psi(r) = 0 \qquad \Rightarrow \qquad \psi(r) \sim r^{\Delta} \ .$$
 (5)

• Define a new superpartner Hamiltonian: $\hat{h}_{N}^{(\dagger)} = \hat{q}_N \hat{q}_N^{\dagger}$

Quantum mechanics

A brief review of scale invariance

¹¹Falomir and Pisani 2005.

¹²Okazaki 2015.

▶ Define formally self-adjoint supercharges:

$$\hat{Q}_N^+ = \left(egin{array}{cc} 0 & \hat{q}_N^\dagger \ \hat{q}_N & 0 \end{array}
ight) \; , \;\; \hat{Q}_N^- = \left(egin{array}{cc} 0 & -i\hat{q}_N^\dagger \ i\hat{q}_N & 0 \end{array}
ight) \; .$$

► These give the super-Hamiltonian:

$$\hat{H}_{N} = \left(\hat{Q}_{N}^{+}\right)^{2} = \left(\hat{Q}_{N}^{-}\right)^{2} = \left(\begin{array}{cc} \hat{h}_{N}^{(b)} & 0\\ 0 & \hat{h}_{N}^{(f)} \end{array}\right) ,$$

$$\left[\hat{H}_{N}, \hat{Q}_{N}^{\pm}\right] = 0 .$$

Now make sure \hat{Q}_N^{\pm} is self-adjoint:

$$\int_{r=L}^{\infty} dr \left[\vec{\Phi}^{\dagger}(r) \hat{Q}_{N}^{\dagger} \vec{\Psi}(r) - \left(\hat{Q}_{N}^{\dagger} \vec{\Phi}(r) \right)^{\dagger} \vec{\Psi}(r) \right] . \tag{6}$$

A brief review of scale invariance

Quantum mechanics

Cut-offs, self-adjoint boundary conditions and energy spectra

Renormalisation group flow of boundary conditions Self-adjoint extensions

nodes

QFT

Free theory Interactions

Future projects

- Self-adjoint extensions restricted to $U_m^2 = \mathbb{1}_m$.
- ▶ Bound state spectrum is empty as $\langle \Psi | \hat{H} | \Psi \rangle \geq 0$.
- However, quasi-bound states appear in spectrum unless U_m is diagonal.
- Uppermost image is a Hamiltonian with real power laws for the zero modes. Lowermost has complex modes and a geometric tower.

In Re[k]

A brief review of scale invariance

Quantum mechanics

Cut-offs, self-adjoint boundary conditions an

of boundary conditions

Self-adjoint extensions

The importance of zero

The importance of zero nodes

OFT

Free theory

Future projects

Onward to fields...

- Question: having considered non-local linear interactions, what about local non-linear interactions?
- Primarily interested in introducing interactions to the free field theory

$$\mathcal{L} = \frac{i}{2} \left(\phi^* \partial_t \phi - \partial_t \phi^* \phi \right) - \frac{1}{2m} |\vec{\partial}^2 \phi|^2 . \tag{7}$$

- lacktriangle Quartic dispersion relations $(\epsilon \sim ar{p}^4)$
 - ▶ ultracold gases with shaken optical lattices, ¹³
 - fermions in biased bilayers of graphene, 14
 - ▶ heavy fermion metals. 15

Quantum mechanics

Cut-offs, self-adjoint

Renormalisation group flow of boundary conditions

The importance of zero modes

Supersymmetrisation

(FT

ree theory

Future projects

A brief review of scale invariance

¹³Miao, Liu, and Zheng 2015; Radić, Natu, and Galitski 2015; Po and Zhou 2015; Wu, Zhou, and Wu 2017.

¹⁴McCann and Koshino 2013.

¹⁵Ramires et al. 2012.

Compare our theory of interest to well known action

$$\mathcal{L} = \frac{i}{2} \left(\phi^* \partial_t \phi - \partial_t \phi^* \phi \right) - \frac{1}{2m} |\vec{\partial} \phi|^2 - \frac{\lambda}{4} |\phi|^4 . \tag{8}$$

- Known features:
 - 1. classically has Schrödinger conformal symmetry and
 - 2. this is broken at quantum level to give a bound state of two particles.
- ▶ Differences to our field theory:
 - 1. ours has scale but no conformal invariance,
 - 2. there are many more permissible interactions,
 - 3. one of which is exactly marginal and
 - 4. there is a bound state of three particles.

A brief review of scale invariance

Quantum mechanics

boundary conditions and energy spectra

of boundary conditions Self-adjoint extensions

nodes

QFT

ree theory

Future projects

- Question: what is the most general, scale invariant action with Lifshitz symmetry?
- ightharpoonup The classical Hamiltonian density ${\cal H}$ is

$$\frac{1}{2m} \left| \vec{\partial}^2 \phi + \zeta_4 |\phi|^2 \phi \right|^2 + \lambda_4 |\phi|^2 |\vec{\partial} \phi|^2 + \frac{1}{3!^2} \left(\lambda_6 - \frac{3!^2 |\zeta_4|^2}{2m} \right) |\phi|^6 .$$
(9)

Free propagator

$$G_{F}(r,t) = -i\theta(t) \int_{0}^{\infty} \frac{d\|\vec{k}\|}{(2\pi)} \|\vec{k}\| J_{0}(\|\vec{k}\|r) e^{i\left(\frac{\vec{k}^{4}}{2m}t\right)}. \quad (10)$$

Spatial correlator

$$\left\langle 0|[\phi(t,\vec{x}),\phi^{\dagger}(t,\vec{y})]|0\right\rangle \sim \frac{\delta(\|\vec{x}-\vec{y}\|)}{\|\vec{x}-\vec{y}\|}.$$
 (11)

A brief review of scale invariance

Quantum mechanics

Cut-offs, self-adjoi

Renormalisation group flow of boundary conditions

> e importance of zero des

Supersymmetrisation

QFT

ree theory

Future projects

Charge conservation violating

Vanishes under normal ordering

► The bare propagator takes the form

$$\Gamma_B^2(\vec{p},\varepsilon) = \varepsilon - \frac{1}{2m}\vec{p}^4 - \Sigma(\vec{p},\varepsilon) - \Pi(\vec{p},\varepsilon)$$
 (12)

Thus the exact 1PI-propagator is

$$\Gamma_R^2(\vec{p},\varepsilon) = \varepsilon - \frac{1}{2m}\vec{p}^4$$
 (13)

A brief review of scale invariance

Quantum mechanics

Cut-offs, self-adjoint boundary conditions and energy spectra

of boundary conditions Self-adjoint extensions

modes

Juper J Hilliet Hat

QFT

ree theory

uture projects

Coupling to a gauge field
Non-zero temperature

Need to evaluate

$$\int^{\tilde{\Lambda}} \frac{dx d\theta}{(2\pi)^2} \frac{x}{1 - (X_2^2 - 2X_2x\cos(\theta) + x^2)^2 - x^4 + i\epsilon}$$
 (14)

where
$$x = \|\vec{p}\|/(2m\Omega)^{1/4}$$
, $\tilde{\Lambda} = \Lambda/(2m\Omega)^{1/4}$.

A brief review of scale invariance

Quantum mechanics

Cut-offs, self-adjoint boundary conditions and energy spectra

Renormalisation group flow of boundary conditions Self-adjoint extensions

modes

Supersymmetrisa

QFT

Free theory

Coupling to a gauge for

Resum

$$-i\Gamma_4^{1\text{PI}} = \frac{-i\lambda_4 P^2}{1 + 2mi\lambda_4 X_2^2 I_1(X_2)} = P^2 f\left(\frac{\Omega}{P^4}\right)$$
. (15)

- Lifshitz scaling allows for a non-trivial dependence on the kinematic parameter - unlike relativistic and Schrödinger cases.
- ► The other two body interaction is not so pleasant → logarithmic and quadratic divergences.
- Logarithmic term introduces a scale.

A brief review of scale invariance

Quantum mechanics

Cut-offs, self-adjoint boundary conditions and energy spectra

of boundary conditions
Self-adjoint extensions

nodes

Supersymmetrisation

QFT

ree theory

Future projects

3-body interactions and bound states

► Hard to evaluate even numerically. Zero \vec{P} :

$$\int d^2x_1I_1(x_1) \sim \ln\Lambda \tag{16}$$

Resum six-point function

$$\Gamma_6^{1\text{PI}}\big|_{\vec{P}=\vec{0}} = \frac{\lambda}{1 + \frac{m\tilde{\lambda}}{3!\pi} \left(\frac{1}{32} \ln\left(-\frac{\Lambda^4}{2m\Omega}\right) - \text{Re}[\phi]\right)}$$
(17)

Bound state:
$$\Omega = -\frac{\Lambda^4}{2m} \exp\left(\left(\frac{192}{m\tilde{\lambda}}\right)\pi - 32\operatorname{Re}[\phi]\right)$$
.

Anisotropic scale invariance

A brief review of scale invariance

Quantum mechanics

Cut-offs, self-adjoint boundary conditions and energy spectra

Renormalisation group flow of boundary conditions Self-adjoint extensions

modes

OFT

ree theory

teractions

Future projects

▶ Unlike the Schrödinger theory there is an exactly marginal deformation for the z = 4 Lifshitz theory

$$V_{\text{int.}} \sim \lambda_4 |\phi|^2 ||\vec{\partial}\phi||^2 \tag{18}$$

- We expect this to extend to general "z" for a scalar. However, fermion interaction depends on relative momentum across vertex.
- We conjecture that there are bound states of (N+1)-particles for the polynomial interaction in a Lifshitz theory with z=2N.

A brief review of scale invariance

Quantum mechanics

Cut-offs, self-adjoint boundary conditions and energy spectra

of boundary conditions
Self-adjoint extensions
The importance of zero

modes

QFT

Free theory

Future projects

A brief review of scale invariance

Quantum mechanics

Cut-offs, self-adjoint boundary conditions and energy spectra

Renormalisation group flow of boundary conditions Self-adjoint extensions

The importance of zero

Modes Supersymmetrication

QFT

Free theory

Future projects

Coupling to a gauge fie
Non-zero temperature
Fractional quantum

Problem: realisable potentials given by external gauge field

$$S = \int d^{d}x dt \, \frac{i}{2} \left(\Psi^{*} D_{t} \Psi - (D_{t} \Psi)^{*} \Psi \right) + \| \vec{D} \Psi \|^{2N} \, (19)$$

with
$$D_{\mu} = \partial_{\mu} - ieA_{\mu}^{\mathrm{ext}}$$
.

- ► A solution: couple to Chern-Simon's. 16
- **Extensions:**
 - Non-abelian gauge fields.
 - Competition with anyonic superfluidity.
 - ▶ Identification of anomaly coefficients?

 \triangleright (2 + 1)-dimensional supersymmetric Schrödinger theory has two types of supersymmetry

$$\begin{array}{lll} \text{kinematic}: & \left\{\hat{q},\hat{q}^{\dagger}\right\} & = & \hat{N}_{\text{boson}} + \hat{N}_{\text{fermion}} \;, \\ \\ \text{dynamical}: & \left\{\hat{Q},\hat{Q}^{\dagger}\right\} & = & \hat{H} \;. \end{array}$$

- Combine to give a type of $\mathcal{N}=2$ SUSY with spatial momentum being a central charge \rightarrow supersymmetric BPS vortices¹⁷ \rightarrow quantum Hall effect.
- ▶ Question: is there a similar phenomenon for Lifshitz scaling symmetry?
- **Problem:** central charge $\sim P^N$ which is a non-linear operator.

A brief review of scale invariance

Quantum mechanics

Cut-offs, self-adjoint boundary conditions and energy spectra

Renormalisation group flow of boundary conditions Self-adjoint extensions

he importance of zero

Supersymmetrisation

QFT

ree theory

Future projects

¹⁷Tong and Turner 2015.

Thermal partition functions, thermal corrections and the Casmir effect

- Problem: what are the finite temperature consequences of the QCP transition?
 - Mutual fixed point annihilation at T = 0 gives BKT-like transition.
 - Application: may be responsible from transition¹⁸ in QED₃. New phase¹⁹?
 - Virial expansion and Tan contact term²⁰
- ▶ Need $\lambda \sim \lambda(T)$.

Quantum mechanics

Cut-offs, self-adj

energy spectra

Renormalisation group flow of boundary conditions

he importance of zero

Supersymmetrication

OFT

ree theory

Future projects

oupling to a gauge field on-zero temperature

Fractional quantum mechanics

A brief review of scale invariance

¹⁸Coleman and Schofield 2005.

¹⁹ Herbut 2016.

²⁰Ordonez 2016.

▶ **Problem:** more types of scale invariance in quantum theory than represented by integer powers e.g.

$$\left[(-\Delta)^{\frac{\alpha}{2}} + V(r) \right] \psi(\vec{r}) = E\psi(\vec{r}) . \tag{20}$$

Is there DSI for these systems?

- Inherently non-local test on behaviour of CSI to DSI transitions.
- Can occur in systems where $m(\vec{k}) \sim k^{\alpha}$.

Solution:

- Attempt to generalise general solutions to equation of motion (hard).
- ► Multi-fractional spacetime²¹ approach.

A brief review of scale invariance

Quantum mechanics

Cut-offs, self-adjoint boundary conditions and energy spectra

f boundary conditions elf-adjoint extensions

modes

QFT

ree theory

Future projects

Coupling to a gauge field

Non-zero temperature

²¹Calcagni 2012.

invariance

A brief review of scale invariance

Quantum mechanics

Cut-offs, self-adjoint boundary conditions and energy spectra

of boundary conditions

Self-adjoint extensions

modes

Supersymmetrisation

QF

Thanks for listening!

Free theory

uture projects

oupling to a gauge field

on-zero temperatui

Fractional quanti mechanics