

Update on divergent pointing with ctapipe

Thomas Gasparetto

(University of Trieste & INFN, Université Grenoble Alpes & LAPP)

Where were we?

- Performed some preliminary cross-checks between ctapipe and EventDisplay, showing some bugs in the latter.
- I had to move from the 2D reconstruction method to the 3D method present in ctapipe
- We have now more data
 - More files with same layout (divergent MSTs and parallel LSTs in La Palma)
 - Small production made by Alice: same CORSIKA, just different telescopes configurations. This allows an event-by-event comparison.
 - Another small production from Alice with a bigger divergent angle
 - Protons not already done...they will come soon...

An update:

- It was decided to use the reference curves for sensitivity, angular and energy resolution to compare with the ctapipe output: EventDisplay analysis discarded to use only ctapipe.
- Better to focus on the development than try to debug EventDisplay

The reco method

- I've changed the pipeline from using the 2D method to the 3D one.
 - 2D is less performant and a bit more complicated to use
 - 3D was not "ready" for divergent pointing analysis
- The 3D method for divergent pointing (PR #946 is WIP):
 - The reconstruction of the position in the sky works.
 - The reconstruction of the impact point is done in 2D and it has to be corrected for the divergent pointing
 - I'm also missing the h_max reco

IMPORTANT:

The results are not bad for divergent pointing for both the position in the sky, impact poing and h_max...this is **not** because the code was written for divergent pointing but because the deviation from parallel pointing is so small that the result has a slightly higher error.

04/03/2019

The 3D method

How the 3D method works. For each camera:

- take c.o.g. (a) plus a point along the major axis of the ellipse (b) [here their distance is enlarged just for visualization, but everything still holds]
- those two points in the camera are projected in the sky: CameraFrame → astropy AltAz (once "on the sky" their distance is ideally infinite → not taking into account telescope positions)
- find the plane passing through a, b and the center:
 - (a x b) x a = c, which resides in the plane
 - c x a = normal vector (norm)

Then the intersection is performed pair-wise and the angle between the planes is used as a weight.

This works also for Divergent pointing

INFN MC - Thomas Gasparetto

The 3D method

The 3D method

Visualization of two MSTs

- two MSTs in La Palma
- normal pointing
- gamma diffuse
- huge 10 TeV event

+ reco

X mc

Some angular resolution plots

Next steps...

- Make the full reconstruction work for the divergent pointing
 - Sky position reconstrunction is OK
 - Impact point position has to be adjusted according to the offset between the telescope pointing and the array direction...should be easy
 - I will the impact point in tilted frame in the 3D displayer, plus a line to display if the the impact point reconstruction really works well
 - h_max (it works?)
- Test on more data:
 - Test on the new data that Johan made (100 x than first small production)
- Then test on other dataset:
 - Small MC productions: some data to play with with different pointing strategies
 - Perform full analysis in order to understand sensitivity & angular resolution & energy resolution

...then we need the full IRF chain in ctapipe to produce IRFs...