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Planned ET sensitivity
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Benefits of 3G detectors

> Deeper’: observe more distant sources
(population studies, cosmological effects,...)

» Wider': increase accessible parameter space
(new sources, wider study of known sources,...)

> Sharper’: detect more subtle effects
(new sources, test of models,...)

= For some science goals GWs are a unique probe.

" For others a multi-messenger approach is the key.

*. from the BBH chapter of the GWIC 3G white paper 3



Science case topics (partially overlapped)

* Fundamental physics

= Physics and Astrophysics of compact
objects

= Cosmology & cosmography

Science is beautiful but you need appropriate tools
to make it

-> A parallel development in source modeling,
data analysis techniques and computing is of
paramount importance in order to exploit
detector potentialities. 4



Fundamental physics
ET will provide answers on:

» The|nature of gravity (is GR the correct
theory?)

= The|nature ¢f compact objects (BH

“mmtr'Ck

= Thelnature of darkmatter (primordial BHs,
ultra-light boson interacting with BHs,...)

Background picture from https://www.darkgra.org/gw-echo-catalogue.html 3



»  Deviations from GR show up in GW
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S
101 2
W v v S
] o)
105 \ / . .
] O
] @ W O Q
-1 c
10 v v O E—N 3

=

‘>~ 1072 O = 5
< ] ®
] py
10~3 [ é
ET after ~10° detections [ g?_;
1074+ =
GW 1 1 PhenomPNRT g
s ] M 70817 SEOBNRT o
— : : : : : : - - - Q
Credit: GWIC 3G S S S S S S N sy s 3
extreme matter /\,Q QQ %Q \/Q %Q WQ/ Qé "DQ Q$ <®Q %
group O > q:p ™ OD 7

(AN v v 2 UN /DN D N
d(v) = (E) [900PN + ©0.5PN (—> T Q1PN (E) + ...+ Yo spn log ( ) (—) + ...t P35PN (E) ]

C C C



» Test the ‘no-hair’ conjecture by measuring
frequency and decay times of at least two BH
guasi-normal modes
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Physics and Astrophysms of compact

» Astroph!

1eutron
stars |

NASA/CXO/SAO



Maximum distance of detectable binary systems
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> ET will see all the BBH in the Universe and
BNS systems up to z~2

- Accurate measure of spins, masses, natal
Kicks, orbital eccentricity, ...
- Merger rate vs redshift

4
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Low frequency is crucial for light seed BHs (100-1000 M

sun)
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» In conjunction with EM observations (e.g. of
kilonovae and GRBSs)

= |dentification of kilonovae beyond z~0.5 needs
8-m class facilities (e.g. LSST) in absence of a

GRB pointing toward us

= At z<0.5 thousand host galaxy will be identified

through kilonova emission
12



» In r ~tunction with EM observations (e.g. of
k’ and GRBs)
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Neutron star structure

Crust: nuclei, elect,,
ou““!l ns

Inner Crust:
nuclei, electrons, neutrons

Outer Core

neutrons, protons
electrons, muons

quark-
hadron
transition
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Neutron star structure

14



Inspiral and merger signal amplitude spectrum
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ET constraints on NS ellipticity

Minimum detectable ellipticity for known pulsars — Tobs=5 yr
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Some indication exists that millisecond pulsars could
have ellipticity ~107: testable by ET woan+, ApJ 863, L40 (2018)]

-> True astrophysics and nuclear physics
laboratory to study NS properties 75



Cosmology and cosmography

2

Not guaranteed Almost guaranteed
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SGWB landscape plot
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Need to subtract all individual BBH mergers

throughout the Universe
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» ET will measure cosmological parameters
with high accuracy (~1% after few years)

- through standard candles
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The present and the future of GW astronomy

Saturn as viewed by
G. Galilei in 1610
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The present and the future of GW astronomy

Saturn as viewed by
G. Galilei in 1610
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The present and the future of GW astronomy

Saturn as viewed by
G. Galilei in 1610

Saturn as viewed by G.
Cassini in 1675

arXiv:1309.1711
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The present and the future of GW astronomy

Saturn as viewed by
G. Galilei in 1610

Saturn as viewed by Hubble telescope in 2018

-

Saturn as viewed by G.
Cassini in 1675

Photo: NASA, ESA, STScl, M. Mutchler (STScl), A. Simon (GSFC) and
the OPAL Team, J. DePasquale (STScl)

arXiv:1309.1711



The present and the future of GW astronomy

Saturn as viewed by
G. Galilei in 1610

Saturn as viewed by Hubble telescope in 2018

For much more details, please look at the
GWIC 3G science case document:
https://gwic.ligo.org/3Gsubcomm/documents.shtml

Photo: NASA, ESA, STScl, M. Mutchler (STScl), A. Simon (GSFC) and
the OPAL Team, J. DePasquale (STScl)

arXiv:1309.1711 20



BACKUP SLIDES

Strain (Hz'llz)

10 R IR
0 10" 10’
Frequency (Hz)

10

10



Limitations of a single ET observatory

» Reduced sky localization capabilities (for transient
sources), with an impact on the science reach and
multi-messenger astronomy.

» Impact especially for cosmological sources

9
9

oroblem of the measure of the redshift

Limited accuracy in the measure of the

luminosity distance

> Correlated noise



The nature of gravity
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» M, L characteristic mass and size of a system
> In the case of binaries: M/L o v?/c?
» Accessing strong-curvature and highly dynamical regime



» Lovelock’s theorem implies that departures from
GR that preserve locality will generically require
extra degrees of freedom: e.g. new fields or
higher dimensions

Higher dimensions | WEP violations I

-
-

l Extra fields - e Diff-invar. violations

Dynamical fields
(SEP violations)

Nondynamical ﬁeldsI Massive gravity | Lorentz-violations |

Palatini f(R) dRGT theory Einstein-Aether
Eddington-Born-Infeld Massive bimetric Horava-Lifshitz
gravity n-DBI

Scalar-tensor, Metric f(R) Einstein-Aether TeVeS
Horndeski, galileons Horava-Lifshitz  Bimetric gravity
Quadratic gravity, n-DBI 6



» New fields, for example:

= Scalar-tensor theories
* Binary components get “dressed” with scalar charge
(benefit from ET’s high-frequency sensitivity)
= Gravitational parity violation
* Modifications in binary dynamics
 GW birefringence, building up over distance (benefit from
ET’S large distance reach)
» Massive graviton, and local Lorentz invariance violations
= Cause dispersion of GWs: accumulates over distance
= Current bound m, < 5 x 10 eV/c* will be improved upon by 2
orders of magnitude
» Variability of G, and local position invariance violation
= Constraints better by 8 orders of magnitude over 2G
(benefit from ET’s large distance reach)

» Additional fields often lead to extra polarizations
11



The nature of compact objects

How certain are we that the massive compact objects we are
observing are the “standard” black holes of general relativity?

- “Black hole mimickers”

BG-GWI(_) Ext_remei Grayity C_-‘;roup

Black hole limit

i
L] I | ]
102" 10 3 2 surface redshift
Planck scale clean photosphere DBuchdahl photosphere

13



The nature of compact objects (BH “mimickers”)

How certain are we that the massive compact objects we are

observing are the “standard” black holes of general relativity?
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» Spin-induced quadrupole moment during inspiral

" k. =1 for ordinary BHs, but not for BH mimickers
= Not accessible to 2G; 3G measurements to few percend



100

[— || > Black hole “no hair” conjecture:
Stationary, vacuum black hole
completely determined by mass and

spin

= (Qualitative advantage of ET: able
to distinguish the various QNM,
perform consistency check

» GW echoes
= |f horizon modified: periodic
bursts of GW after ringdown has
ended
5, = Possibility to access macroscopic
e quantum effects: firewalls,
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ET configuration impact for mergers
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Core collapse supernovae

» Understanding the explosion mechanism
(neutrinos, SASI, rotation, etc.)

» Time frequency evolution of PNS oscillations

D...~100 kpc
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CE narrowband

aLIGO design

C15 OakRidge 2017 @ 100kpc
W15-4 htot Garching 2012 @ 100kpc
TM1 Kuroda 2016 @ 100kpc
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Frequency [Hz]

Yakunin 2017 Mueller 2012 Kuroda 2016

C15 L15-3 N20-3 WI5-1 SFHX TMI
ET-D 54 12 4 6 24 18
CE 129 26 11 11.5 51 37
aLIGO 5.9 1.3 0.4 0.6 2.7 2.0

Table 4.1: Matched-filter SNRs of six 3D neutrino-driven explosion simulations for a source located at 100
kpc recorded in 1) the Einstein Telescope (ET-D), 2) the Cosmic Explorer (CE), and 3) and advanced LIGO at

design sensitivity (aLIGO) are provided here. The matched-filter SNRs do not include a detector’s antenna
function.
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Detectability of BBH systems by ET and LISA

I cosmic dawn

cosmic reionization

cosmic high noon

Multi-band detection of IMBH

Complementarity in understanding the origin of SMBHSs



