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The era of multi-messenger astronomy with GWs has begun!

GW170817:

• coincident short GRB detected in
gamma rays

• an optical/infrared/UV counterpart
(the kilonova) has been detected

• An X-ray and a radio counterparts
have been identified

• HE (E > 100 MeV)
and VHE (E > 20 GeV):
no significant emission has been
found

(Abbott et al. 2017 and refs. therein)

Next challenge:

detection of HE and VHE gamma rays associated with GW signals
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Do GRBs have GeV-TeV emission?

Before Fermi :

limited knowledge about GRB emission above 100 MeV

• A 18 GeV photon was detected by EGRET from the long GRB 940217 (Hurley et
al. 1994)

• HE emission (up to 200 MeV) was detected by EGRET from the long GRB
941017 (González et al. 2003)

• A hint of ⇠ TeV emission was detected by Milagrito (500 GeV-20 TeV) from the
long GRB 970417A (Atkins et al. 2000)

with Fermi :

• tens of GRBs with high energy emission (> 100 MeV)

• among them, there are a few short GRBs with emission above 1 GeV

Very recently:
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The Cherenkov Telescope Array (CTA)

A ground-based observatory for gamma-ray astronomy at very-high energies

Southern Hemisphere Site Rendering; image credit: G. Perez, SMM, IAC

• two arrays: one in the Northern hemisphere, one in the Southern hemisphere

) full-sky coverage

• CTA baseline array in the North (South):

- 4 (4) Large Size Telescopes (LSTs); ⇠ 20 GeV - ⇠ 200 GeV

- 15 (25) Medium Size Telescopes (MSTs); ⇠ 100 GeV - ⇠ 10 TeV

- 0 (70) Small Size Telescopes (SSTs); ⇠ 5 TeV - ⇠ 300 TeV

) wide energy coverage
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Why CTA?

• coincident observational
schedule with GW detectors at
design sensitivity
(CTA completion expected by
2025)

• large field of view
(LST: 4.5 deg)

• scan mode

• Rapid response ( 30 s) of
LST

• Very high sensitivity
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Simulation of BNSs and their GW emission and detection

BNS mergers

• ⇢
galaxies

=0.0116 Mpc�3 (Kopparapu et al. 2008)

• Maximum distance: 500 Mpc

• Merging systems: Synthetic Universe1 (Dominik et al. 2012)

• Bimodal distribution in metallicity: half at Z=Z� and half at Z=0.1·Z�
(Panter et al. 2008)

• Merger rate: 830 Gpc�3 yr�1 (within the range in Abbott et al. 2017)

GW emission and detection

• Non spinning systems; TaylorT4 waveforms (Buonanno et al. 2009)

• Matched filtering technique (Wainstein 1962)

• aLIGO (Aasi et al. 2015) and AdV (Acernese et al. 2015) at design sensitivity

• 80 % independent duty cycle for each interferometer (Abbott et al. 2016)

• Trigger: at least 2 detectors; combined SNR threshold: 12

• GW localization with BAYESTAR (Singer et al. 2014)

Simulations are available in the public database GW COSMoS

Patricelli et al. 2016,2018

1www.syntheticuniverse.org
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Simulation of BNSs and their GW emission and detection
Simulation of the VHE emission and detection

GRB simulations

• Each BNS merger is associated to a short GRB;

• Only on-axis GRBs are considered; ✓
j

=10� (Fong et al. 2014);

• GRB 090510 as a prototype:
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Light curve:

F (t) = A
(t/tpeak)

↵

1 + (t/tpeak)↵+!

Spectrum:

N(E) / E� , � = �2.1

(De Pasquale et al. 2010)

• We corrected F (t) to take into account the di↵erent distance of the sources;

• We re-scaled F (t) considering the following range of isotropic energy:
1049 ergs  E

�

 3.5⇥1052 ergs (Ghirlanda et al. 2010, Fong et al. 2015)

• We extrapolate the flux to higher energies assuming a power-law with exponential cut-o↵
spectrum: E

c

=30 GeV, 100 GeV
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Simulation of BNSs and their GW emission and detection
Simulation of the VHE emission and detection

Proposed strategy

Step 1:

We estimate the observing time tiobs needed for the simulated GRBs to have a fluence
equal to the CTA sensitivity, considering a set of consecutive pointings
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tistart=(tslew+tlatency)+ti�1
obs

tistop=tistart+ tiobs
i=1, ..., np

) This will tell us the maximum number of observations np that we can do and the
observing time of each observation
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Proposed strategy

Step 2

We construct a 2D grid of CTA
pointings:

Image credit: Dubus et al. 2013

• multiple evenly-spaced row of
pointings

• Angular step: 2�

(maximum step that provides
nearly uniform sensitivity coverage,
see Dubus et al. 2013)

Step 3

We do the intersection between the GW
skymap and the 2D grid of pointings,
taking into account np

) percentage of the GW skymap that
can be covered with np observations
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GRB simulations at VHE

Observation time:

• We considered a latency to send the GW alert tl=3 minutes

• We considered a slewing time tslew=30 s (LSTs)

Sensitivity:

• We estimated the sensitivity with the function cssens of ctools2 (Knödlseder et
al. 2016)

• We used the instrument response functions (IRFs)3 “North 0.5h” and
“South 0.5h” (zenith angle=20 deg)

• We considered a 5 � (post-trials) detection threshold

CTA Duty cycle:

• We assumed a conservative duty cycle of ⇠ 10 %

2http://cta.irap.omp.eu/ctools/; in this work we used the ctools version 1.4.0
3
https://www.cta-observatory.org/science/cta-performance/
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Results: GW skymap coverage with CTA pointings

Eiso cut-o↵ % of events % of events

(ergs) (GeV) Obs. region Obs. region

=90 % � 50 %

1049 — 30 < 1 < 1

- - 100 1.5 1.9

10501050 —— 30 8.8 12.2

- -- - 100 18.0 28.8

1051 — 30 59.7 74.5

- - 100 73.0 85.1

3.5⇥1052 — 30 99.9 100

- - 100 99.9 100

Patricelli et al. 2018, JCAP, 5, 56
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Results: joint GW and EM detection rates

Eiso cut-o↵ EM and GW

(ergs) (GeV) (yr�1)

1049 30 < 10�3

100 < 0.001

1050 30 0.01

100 0.03

1051 30 0.06

100 0.07

3.5⇥1052 30 0.08

100 0.08

Rates are expected to increase if:

• Higher CTA duty cycle is
considered (e.g., observations
during moonlight): factor ⇠ 2

• Higher BNS merger rates are
considered (see Abbott et al.
2017): factor ⇠ 6

+
For most energetic events up to

1 event per year!

• Higher ✓j is assumed

• O↵-axis GRBs are included

Patricelli et al. 2018, JCAP, 5, 56
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Conclusions

Summary:

• We presented a comprehensive study on the prospects for joint GW and VHE EM
observations of BNSs with CTA

• We proposed an observational strategy that combines the maximum coverage of
the GW skymaps and the maximum probability of EM detection

• We estimated the expected joint GW and VHE EM detection rates, that go from
0.08 up to 1 event per year for the most energetic GRBs

• The observational strategy proposed can be generalized to other telescopes
and/or other EM emission models
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GW CoSMOS

https://doi.org/10.6084/m9.figshare.c.4243595

16 / 20

https://doi.org/10.6084/m9.figshare.c.4243595


Introduction
The method: simulating BNS mergers

Results
Conclusions

Test case

• SNR=18; 90 % credible region ⇠ 56 deg2

• EISO = 1051 ergs; Ecut�o↵=100 GeV

GW skymap and CTA tilings Event and Significance (TS) Map

Patricelli et al. 2018, JCAP, 5, 56
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Post-trial significance distribution

To estimate the statistical uncertainties, we simulated 1000 times the same event with
ctools

Patricelli et al. 2018, JCAP, 5, 56
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CTA coverage vs Distance

The distance of the source possibly provided in the GW alert can be used to further
optimize the observational strategy
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Patricelli et al. 2018, JCAP, 5, 56
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Improvement with respect to “standard” strategies (constant obs time)
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Improvement in the GW sky coverage

+
increase in the joint GW and EM

detection rates!

example:

- -- - Eiso=1050 ergs, cut-o↵=100 GeV

the rate increase by a factor ⇠ 2

Patricelli et al. 2018, JCAP, 5, 56

20 / 20


	Introduction
	The method: simulating BNS mergers
	Simulation of BNSs and their GW emission and detection
	Simulation of the VHE emission and detection

	Results
	GW skymap coverage
	Joint GW and EM detection rates

	Conclusions

