EM-MBTA: Low Latency Ranking of Galaxies within a Gravitational-wave Sky Localization

 F. Brighenti¹, G. Greco¹, G. Guidi¹, F. Piergiovanni¹, F. Marion², B. Mours², D. Buskulic², F. Aubin²

> ¹Dipartimento di Scienze Pure E Applicate Università degli Studi di Urbino/ INFN-Firenze

²Laboratoire d'Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy, France

GRAVI-GAMMA Workshop, Perugia 16-18 May 2019

Introduction	Detection pipelines and sky localization	Ranking galaxies	EM follow up strategies	Conclusions
Introdu	iction			

- Success of the observational campaign following GW170817 originates also from some lucky coincidences: closest GW event and highest SNR.
- Skymap limited the 90% probability area to just $28 \deg^2$.
- Skymaps typically cover $\mathcal{O}(100 1000) \text{ deg}^2$.
- Ranking galaxies using gravitational information only could be helpful to astronomers.

◆□ ▶ < □ ▶ < ■ ▶ < ■ ▶ ■ ⑦ Q @ 2/16</p>

Online Pipelines

Modeled Search

- Search for specific signals from Compact Binary Coalescense
- GstLAL, MBTA, PyCBCLive, SPIIR
- matched-filtering based analysis

Unmodeled Search

- Core-collapse of massive stars, magnetar star-quakes, cosmic strings and others
- cWB, oLIB
- Excess power algorithms

<ロ > < 回 > < 目 > < 目 > < 目 > 目 の Q (3/16

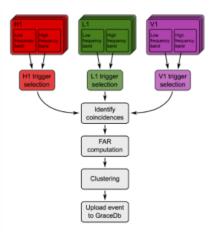
<ロト < 回 ト < 三 ト < 三 ト 三 の へ ペ 4/16

Matched Filtering

Given a signal $s(t)=n(t)+h(t)\mbox{,}$ assuming Gaussian noise the log likelihood is given by

$$\ln \Lambda_h(t) = (s|h)(t) - \frac{1}{2}(h|h)(t)$$

where $(a|b)(t) = 4\Re \int_0^\infty df \frac{\tilde{a}(f)\tilde{b}^*(f)}{S_n(f)}e^{-i2\pi ft}$. Then, SNR time series for the single interferometer is


$$\rho_h^2(t) = 2\ln\Lambda_h(t)$$

Coincident SNR:

$$\rho_{coinc}^2 = \rho_i^2(t_i) + \rho_j^2(t_j)$$

MBTA: Multi-Band Template Analysis

- Parameters space divided in 3 regions (approximately BNS, NSBH, BBH).
- Low-f and high-f bands with approximately equal SNR.
- Clusters triggers associated to the same event.

< □ > < □ > < Ξ > < Ξ > < Ξ > Ξ · の Q ↔ 5/16

Coherent SNR

Generalizing to many detectors¹, $\ln \Lambda_h(t) = (\mathbf{s}|\mathbf{h}) - \frac{1}{2}(\mathbf{h}|\mathbf{h})$ where $(\mathbf{s}|\mathbf{h}) := \sum_{i=ifo} (s^i|h^i)$ and $h^i(t) = \sum_{\mu=1}^4 \mathcal{A}^{\mu}(D, \psi, \phi_0, \iota) h^i_{\mu}(t)$,

$$\begin{split} h_1^i(t) &= F_+^i(\theta^i,\,\phi^i,\,\chi^i)h_0(t)\,,\\ h_2^i(t) &= F_\times^i(\theta^i,\,\phi^i,\,\chi^i)h_0(t)\,,\\ h_3^i(t) &= F_+^i(\theta^i,\,\phi^i,\,\chi^i)h_{\frac{\pi}{2}}(t)\,,\\ h_4^i(t) &= F_\times^i(\theta^i,\,\phi^i,\,\chi^i)h_{\frac{\pi}{2}}(t)\,. \end{split}$$

Then,

$$\ln \Lambda_h(t) = \mathcal{A}^{\mu}(\mathbf{s}|\mathbf{h}_{\mu}) - \frac{1}{2}\mathcal{A}^{\mu}\mathcal{M}_{\mu\nu}\mathcal{A}^{\nu}$$

with $\mathcal{M}_{\mu\nu} := (\mathbf{h}_{\mu} | \mathbf{h}_{\nu})$. Coherent SNR:

$$\rho_{coh}^2(t) = (\mathbf{s}|\mathbf{h}_{\mu})\mathcal{M}^{\mu\nu}(\mathbf{s}|\mathbf{h}_{\nu})$$

¹I. Harry, S. Fairhurst, *Phys. Rev, D* 83 084002 (2011) → (□)

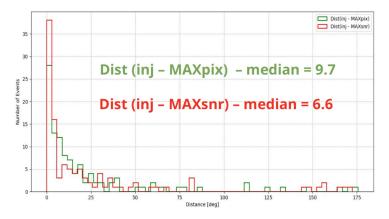
Sky Localization and parameters estimation

- BAYESTAR: rapid CBC sky localization algorithm.
 - Coherently modeling the response of the gravitational-wave detector network.
 - Fixed masses and spins.
 - Computes the **posterior probability distribution** over the sky location and distance of the source.
 - Latency: $\mathcal{O}(10)$ seconds.
- LALInference: full CBC parameter estimation algorithm.
 - Explores a greatly **expanded parameter space** (masses, spins...) with MCMC and nested sampling.
 - Performs **full forward modeling** of the gravitational-wave signal and the **strain calibration** of the gravitational-wave detectors.
 - Latency: $\mathcal{O}(1)$ hours.

	Detection pipelines and sky localization	Ranking galaxies	EM follow up strategies	Conclusions
Strategy				

- Extract galaxies coordinates from Bayestar skymap.
- Select $\mathcal{O}(10)$ templates that triggered in MBTA.
- Matched filtering of the two polarization already performed for online analysis.
- Compute the coherent SNR for each galaxy and for each template in the bank.
- Galaxy with higher cohSNR is the most likely to be the host.

Querying galaxies with GWsky


- **84** gravitational-wave sky localizations from the "First Two Years" paper² are selected (HLV).
- The **90% confidence level** for each probability skymap is build using the MOC (Multi Order Coverage map) implemented in GWsky/Aladin.
- We query databases for retrieving objects whose position falls within this MOC map at 90% confidence level using the **GLADE** catalog.
- We compute the sky position of the maximum probability pixel.
- See G. Greco's talk for more details.

²Singer et al. arXiv:1404.5623 [astro-ph.HE]

Calculating the coherent SNR

- LALSuite code **lalapps_cohPTF_inspiral** looping over the selected galaxies from the GLADE catalog cutting at 1-sigma distance.
- Component masses of the **template with highest coincident SNR** are passed to a script that prepares a single-template bank that is used for the analysis.
- The template bank and the GPS times related to the each event are input of the function that computes the coherent SNR.

Large FoV telescopes

Small FoV telescopes

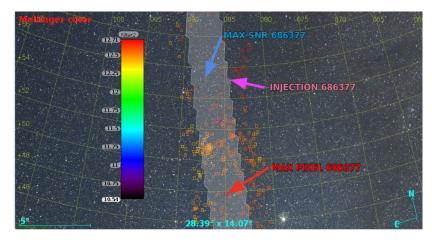


Figure: Here the injection is ranked 3rd using cohSNR while it is at the 41% c.l. that contains 285 galaxies.

Ranking galaxies

EM follow up strategies

Conclusions

Small FoV telescopes

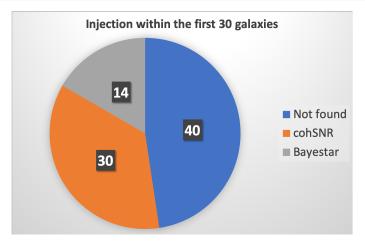
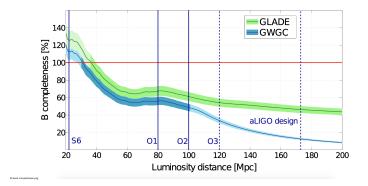



Figure: In 44/84 cases, either cohSNR or Bayestar capture the injection within the first 30 galaxies. In 15/44 cases both cohSNR and Bayestar rank the injection within the first 30 galaxies. cohSNR finds it in a higher ranking 11/15 times, and Bayestar 4/15 times.

Conclusions & outlook

- Small template bank improved the results.
- Results are very **preliminary but intriguing** and motivate further investigation.
- More statistic is required.
- lalapps_cohPTF_inspiral is not optimised for our scope.
- EM-MBTA.py takes advantage of MBTA matched filtering output, computed for online detection.
- Expected latency of few minutes.

Introduction	Detection pipelines and sky localization	Ranking galaxies	EM follow up strategies	Conclusions
GLADE				

Coincident and coherent SNR

coincident SNR

• Single IFO triggers in compatible time window

$$\rho_{coinc}^2 = \rho_i^2(t_i) + \rho_j^2(t_j)$$

- computationally cheap
- less information

coherent SNR

• coherence of phases and amplitudes in all IFOs

$$\rho_{coh}^2(t) = (\mathbf{s}|\mathbf{h}_{\mu})\mathcal{M}^{\mu\nu}(\mathbf{s}|\mathbf{h}_{\nu})$$

- computationally expensive
- more information