Pushing the precision frontier in Collider Physics

Gudrun Heinrich Max Planck Institute for Physics, Munich

Laboratori Nazionali di Frascati, March 28, 2019

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

around 1950: "particle zoo"

new developments were driven by experiment

led to the development of the quark model [Gell-Mann, Zweig 1964]

 1960's: beginning of a theory-driven era development of the Standard Model, concept of gauge theories [Glashow, Salam, Weinberg 1967; Higgs 1964; t'Hooft, Veltman 1972, ...]

The theory-driven era

mass: 48 years after the prediction

we still do not know if the Higgs potential is SM-like

$$V(\Phi) = -\frac{1}{2}\mu^2 \Phi^2 + \frac{1}{4}\lambda \Phi^4$$
 ?

Status of the Standard Model today

Status of the Standard Model today

	$\sigma = 96.07 \pm 0.18 \pm 0.91 \text{ mb} \text{ (data)}$	rund record record record record		m M/m	ليستينا ل		PLR 761 (2016) 159
р	COMPETE HPR1R2 (theory) σ = 95.35 ± 0.38 ± 1.3 mb (data)	ATI AS Preliminary		â	1 1	8×10 ⁻⁸	Nucl. Phys. B, 486-548
	$\sigma = 190.1 \pm 0.2 \pm 6.4$ nb (data)			Ċ,		0.081	PLB 759 (2016) 601
V	$\sigma = 98.71 \pm 0.028 \pm 2.191 \text{ nb} (data)$ DVNNLO + CT14NNLO (theory)	Bun 1 2 $\sqrt{s} = 7.8.13$	TeV/	6	5	4.6	EPJC 77 (2017) 367
	σ = 58.43 ± 0.03 ± 1.66 nb (data) DYNNLO+CT14 NNLO (theory)	110111, 2 = 7, 0, 10	100	Ċ.	6	3.2	JHEP 02 (2017) 117
	σ = 34.24 ± 0.03 ± 0.92 nb (data) DYNNLO+CT14 NNLO (theory)			4		20.2	JHEP 02 (2017) 117
	or = 29.53 ± 0.03 ± 0.77 nb (data) DYNNLO+CT14 NNLO (theory)					4.6	JHEP 02 (2017) 117
	$\sigma = 818 \pm 8 \pm 35 \text{ pb} (\text{data})$ lop++ NNLO+NLL (theory)	Ó			6	3.2	PLB 761 (2016) 136
	$\sigma = 242.9 \pm 1.7 \pm 8.6 \text{ pb} (data)$	۵. "				20.2	EPJC 74: 3109 (2014)
	$\sigma = 182.9 \pm 3.1 \pm 6.4 \text{ pb} (data)$	ō				4.6	EPJC 74: 3109 (2014)
	$\sigma = 247 \pm 6 \pm 46 \text{ pb} (\text{data})$ NLO+NLL (theory)					3.2	JHEP 04 (2017) 086
-chan	$\sigma = 89.6 \pm 1.7 + 7.2 - 6.4 \text{ pb} (\text{data})$	Å				20.3	EPJC 77 (2017) 531
c-chan	$\sigma = 68 \pm 2 \pm 8 \text{ pb (data)}$ NLO+NLL (theory)	ò				4.6	PRD 90, 112006 (201-
	$\sigma = 142 \pm 5 \pm 13 \text{ pb}$ (data) NNLO (lbeory)	6				3.2	PLB 773 (2017) 354
ww	$\sigma = 68.2 \pm 1.2 \pm 4.6 \text{ pb (data)}$ NNLO (theory)	٨				20.3	PLB 763, 114 (2016)
	$\sigma = 51.9 \pm 2 \pm 4.4 \text{ pb (data)}$	0				4.6	PRD 87, 112001 (201 PRL 113, 212001 (20
	$\sigma = 57 + 6 - 5.9 + 4 - 3.3 \text{ pb} (data)$	ò			6	36.1	ATLAS-CONF-2017-0
H Wt WZ ZZ	$\sigma = 27.7 \pm 3 + 2.3 - 1.9 \text{ pb} (data)$	L ⁺		_		20.3	EPJC 76, 6 (2016)
	$\sigma = 22.1 + 6.7 - 5.3 + 3.3 - 2.7 \text{ pb} (data)$ LHC-HXSWG VR4 (theory)	ti i		Theory		4.5	EPJC 76, 6 (2016)
	$\sigma = 94 \pm 10 + 28 - 23 \text{ pb} (data)$ NLO+NNLL (begr)		1			3.2	JHEP 01 (2018) 63
	$\sigma = 23 \pm 1.3 + 3.4 - 3.7 \text{ pb (data)}$	Δ.	LH	C pp $\sqrt{s} = 7$ TeV		20.3	JHEP 01, 064 (2016)
	$\sigma = 16.8 \pm 2.9 \pm 3.9 \text{pb} (\text{data})$	b .		Dete		2.0	PLB 716, 142-159 (20
	$\sigma = 51 \pm 0.8 \pm 2.4 \text{ pb (data)}$ MATRIX (NHH C) (theory)		•	stat		36.1	ATLAS-CONF-2018-0
	$\sigma = 24.3 \pm 0.6 \pm 0.9 \text{ pb} (\text{data})$ MATRIX (NINI C) (theory)	Å		stat ⊕ syst		20.3	PRD 93, 092004 (201) PLB 761 (2016) 179
	$\sigma = 19 + 1.4 - 1.3 \pm 1 \text{ pb (data)}$	ő	1.14	C = 0 ToV		4.6	EPJC 72, 2173 (2012) PLB 761 (2016) 179
	$\sigma = 17.3 \pm 0.6 \pm 0.8 \text{ pb} (\text{data})$ Matrix (MNI O) & Shama (MI O) (beam)	Å		$C pp \gamma s = 0 rev$		36.1	PRD 97 (2018) 03200
	$\sigma = 7.3 \pm 0.4 \pm 0.4 - 0.3 \text{ pb} (data)$	× ⁺		Data		20.3	JHEP 01, 099 (2017)
	$\sigma = 6.7 \pm 0.7 + 0.5 - 0.4 \text{ pb (data)}$	ő	_	stat⊕ svst		4.6	JHEP 03, 128 (2013) PLB 735 (2014) 311
-chan	$\sigma = 4.8 \pm 0.8 \pm 1.6 \pm 1.3 \text{ pb (data)}$		1			20.3	PLB 756, 228-246 (20
- chan	$\sigma = 1.5 \pm 0.72 \pm 0.33 \text{ pb} (\text{data})$ Madoraph5 + aMCNI (O (theory))		- LH	C pp γ s = 13 TeV		3.2	EPJC 77 (2017) 40
tW	σ = 369 + 86 - 79 ± 44 fb (data)			Data		20.3	JHEP 11, 172 (2015)
	$\sigma = 0.92 \pm 0.29 \pm 0.1 \text{ pb} (\text{data})$ Madoraph5 + aMCALO (theory)	Ó		Stat stat svet		3.2	EPJC 77 (2017) 40
Z	σ = 176 + 52 - 48 ± 24 fb (data)			sidi 🕁 syst		20.3	JHEP 11, 172 (2015)
Zi	$\sigma = 620 \pm 170 \pm 160$ fb (data)					36.1	PLB 760 (2018) 557
-						11	
-	0-4 10-3 10-2 10-1	1 101 102 103	104	105 106 10	11 05 10 15 20 2	E	

"There is nothing new to be discovered in physics now. All that remains is more and more precise measurement."

"There is nothing new to be discovered in physics now. All that remains is more and more precise measurement."

Lord Kelvin 1900

"There is nothing new to be discovered in physics now. All that remains is more and more precise measurement." Lord Kelvin 1900

"In this field, almost everything is already discovered, and all that remains is to fill a few unimportant holes."

"There is nothing new to be discovered in physics now. All that remains is more and more precise measurement." Lord Kelvin 1900

"In this field, almost everything is already discovered, and all that remains is to fill a few unimportant holes."

J.P.G. von Jolly, 1809-1884, Professor of Physics, to Max Planck (considering to study physics)

"There is nothing new to be discovered in physics now. All that remains is more and more precise measurement."

Lord Kelvin 1900

"In this field, almost everything is already discovered, and all that remains is to fill a few unimportant holes."

J.P.G. von Jolly, 1809-1884, Professor of Physics, to Max Planck (considering to study physics)

(Planck replied that he did not wish to discover new things, but only to understand the known fundamentals of the field)

Standard Model limitations

Standard Model of Elementary Particles + Gravity

Standard Model limitations

Standard Model of Elementary Particles + Gravity

Standard Model limitations

The Standard Model is "complete", but leaves many puzzling questions!

- too many "ad hoc" parameters in the SM
- neutrino masses
- hierarchy problem
- dark matter
- baryon asymmetry in the Universe
- what drove inflation
- quantum theory of gravitation

We should perhaps finish with an apology and a caution. We apologize to experimentalists for having no idea what is the scale of new physics, unlike the case with the Higgs, and for not being sure of its couplings to other particles, except that they are probably all very small. We should perhaps finish with an apology and a caution. We apologize to experimentalists for having no idea what is the scale of new physics, unlike the case with the Higgs, and for not being sure of its couplings to other particles, except that they are probably all very small.

A PHENOMENOLOGICAL PROFILE OF THE HIGGS BOSON

John ELLIS, Mary K. GAILLARD * and D.V. NANOPOULOS ** CERN, Geneva

Received 7 November 1975

334

J. Ellis et al. / Higgs boson

We should perhaps finish with an apology and a caution. We apologize to experimentalists for having no idea what is the mass of the Higgs boson, unlike the case with charm [3,4] and for not being sure of its couplings to other particles, except that they are probably all very small. For these reasons we do not want to encourage big experimental searches for the Higgs boson, but we do feel that people performing experiments vulnerable to the Higgs boson should know how it may turn up.

Precision measurements cornered the Higgs boson mass

top quark: importance of precision measurements/calculations

Importance of precision

Importance of precision

there is a lot we can learn without immediate discoveries of new particles

The precision frontier

Theorist's basic toolbox

- local gauge invariance $SU(2) \times U(1) \times SU(3)_c$
- renormalisability
- perturbative expansions, e.g.

 $\hat{\sigma} = \alpha_s^k(\mu) \left[\hat{\sigma}^{\text{LO}} + \alpha_s(\mu) \hat{\sigma}^{\text{NLO}}(\mu) + \alpha_s^2(\mu) \hat{\sigma}^{\text{NNLO}}(\mu) + \dots \right]$

important principles of QCD:

• asymptotic freedom

quarks and gluons almost free particles at large energy scales

factorisation

short- and long distance effects can be separated

QCD corrections: building blocks

example 2 to 2 scattering

LO: usually tree level diagrams

tree

000000

level

000000

corrections

real

00000

virtual

corrections

infrared

subtractions

NLO: one loop (virtual) + extra real radiation + subtraction terms

individual contributions are divergent

- requires the isolation of the singularities dimensional regularisation: $D=4-2\epsilon$
- need a good subtraction method for singularities of individual contributions

$$\sigma^{NLO} = \underbrace{\int_{m+1} \left[d\sigma^R - d\sigma^S \right]_{\epsilon=0}}_{\text{numerically}} + \underbrace{\int_{m} \left[\underbrace{d\sigma^V}_{\text{cancel poles}} + \underbrace{\int_{s} d\sigma^S}_{\text{analytically}} \right]_{\epsilon=0}}_{\text{numerically}}$$

QCD corrections: building blocks

NNLO:

QCD corrections: building blocks

NNLO:

Status

 NLO automation: phase after
 "industrial revolution"
 various automated tools
 NLO QCD matched to parton
 shower is new state of the art

Status

 NLO automation: phase after
 "industrial revolution"
 various automated tools
 NLO QCD matched to parton
 shower is new state of the art

• NNLO: automation starts to become feasible

• NNNLO: some results availabe!

What caused the NLO revolution?

gauge dependent off-shell states introduce "spurious" terms try to use on-shell quantities as building blocks

Unitarity method

Bern, Dixon, Dunbar and Kosower (BDDK) 1994

- construct N-point one-loop amplitudes from tree amplitudes Bern, Dixon, Kosower '98
- use of complex momenta in generalised cuts
 Britto, Cachazo, Feng '04
- numerical reduction at integrand level Ossola, Papadopoulos, Pittau '06
- D-dimensional unitarity

Anastasiou, Britto, Feng, Kunszt, Mastrolia '06; Forde '07; Giele, Kunszt, Melnikov '08, Badger '09, ...

NLO amplitudes

one-loop N-point amplitude:

"master integrals": boxes, triangles, bubbles, tadpoles most complicated functions are dilogarithms

 $=\sum_{i} C_4^i + \sum_{i} C_3^i + \sum_{i} C_2^i -$

 C_n^i can be obtained by numerical reduction at integrand level

very different at two loops (and beyond)! master integrals not a priori known measure of complexity

#loops + #legs + **#scales (masses, off-shellness)** complexity does not scale linearly!

MAX-PLANCK-GESELLSCHAFT

The art of perturbation theory

example: 5-loop contributions to electron anomalous magnetic moment

Aoyama, Hayakawa, Kinoshita, Nio '15-'18; S. Volkov '18

V-type diagrams

ha المصاء بمكم المكم المكام (60) (TAM) (AN) 600 (Com) (TAN) ((- - N) (a) (\overline{m}) (TA) 600 (A) and 6لاسما لاسما لاسما ക്കി ക്രി 6 (6) (COM) (DOD) ton ton (TAD) (a) 6 (AD) (TA)) (120) (a) (\overline{a}) (toth) (\bigcirc) (ARM) (TAN) 600 (TAM) (A) 6 (\Box) lla Con (a)(ADD) fa 60 the 60 (a) land (A) (An) (A) (TAD) (ADD) Com (6.) ക്ര Cash 16 and the second (100) (a)ക്രി
V-type diagrams

ha المصاء بمكم بمكم المكا (60) (TAM) (Δ) (a)(AN) 600 (Com) (TAN) ((- - N) (a)(m) tran (m) 600 (A) and 6لاسما لاسما لاسما 6 (5) (CA) (DOD) tond tom (TAN) (a) 6 (AD) (TA)) (120) (\overline{a}) (toth) (\bigcirc) (ARD) 600 (TAM) (m) 6 (\Box) lla 1000 (Ra) Car (a)(ADD) 6 60 the 60 and the fact that the the (and ton (march) (AD) (TAN) (ADD) ക്ര (a) Com (AS) (A) (100) (a)ക്രി TAN TODA (m)

Do we need a completely different approach?

Exploring the Higgs sector

Any deviation in the trilinear or quartic coupling would be a clear sign of New Physics

 λ_{3h} can be measured e.g. in Higgs boson pair production

Higgs boson pair production channels

Exploring the Higgs sector

the parameter in the Higgs potential measured quite well meanwhile: m_h

couplings to vector bosons and fermions also measured increasingly well

Main Higgs production and decay channels

Higgs boson self-coupling(s)

 ATLAS-Conf-2018-043:
 $-5.0 \le \kappa_{\lambda} \le 12.1$ at 95% CL
 $\kappa_{\lambda} = \lambda_{3h} / \lambda_{3h}^{SM}$

 CMS 1811.09689:
 $-11.8 \le \kappa_{\lambda} \le 18.8$ at 95% CL
 $\kappa_{\lambda} = \lambda_{3h} / \lambda_{3h}^{SM}$

HL-LHC: κ_{λ} can be measured at to ~ 30-50% with 3 ab^{-1}

Prospects at future colliders

The Higgs potential

- could have higher terms in λ consistent with SM symmetries

$$V(h) = v^4 \sum_{n=2}^{\infty} f_{V,n} \left(\frac{h}{v}\right)^n$$
 EFT operators, see e.g. YR4 1610.07922

- could have logarithmic dependence on the Higgs field
 - (e.g. Coleman-Weinberg type) $\sim \Phi^4 \ln \left(\Phi^2 / \Lambda^2 \right)$

see e.g. Englert et al 1301.4224

- could have exponential dependence $\sim \exp{\left(-1/\Phi\right)}$

e.g. Reichert et al 1711.00019

Theoretical considerations: how large can the trilinear coupling be?

there is no truly model-independent answer

- perturbativity should break down at a scale $\lesssim 13 \,\mathrm{TeV}/|\delta_3|$ Chang, Luty 1902.05556 $\delta_3 = (\lambda - \lambda_{\mathrm{SM}})/\lambda_{\mathrm{SM}}$
- from vacuum stability and validity of EFT approach: $|\lambda_{3h}| \lesssim 4$ Falkowski, Ratazzi 1902.05936
- from unitarity (based on partial wave analysis for hh -> hh) and perturbativity: $|\lambda_{3h}| \lesssim 6.5$

Di Luzio, Gröber, Spannowsky 1704.03211

- from Higgs portal models, assuming other couplings are close to SM: $|\lambda_{3h}| \lesssim 6$

Di Vita, Grojean, Panico, Riembau, Vantalon 1704.01953

• models with more specific assumptions can lead to stronger bounds e.g. singlet scalar extension, Lewis, Sullivan 1701.08774

Indirect ways to measure the trilinear coupling

trilinear coupling enters also in

- EW corrections to single Higgs production processes
 McCullough '13
 Bizon, Gorbahn, Haisch, Zanderighi '16
 Degrassi, Giardino, Maltoni, Pagani '16
 Maltoni, Pagani, Shivaji, Zhao '17, '18
 Borowka, Duhr, Maltoni, Pagani, Shivaji, Zhao '18
 Nakamura, Shivaji '18
 Gorbahn, Haisch '19
 - EW precision observables
 Degrassi, Fedele, Giardino '17
 Kribs, Maier, Rzehak, Spannowsky, Waite '17

(example diagrams)

Indirect ways to measure the trilinear coupling

trilinear coupling enters also in

- EW corrections to single Higgs production processes
 McCullough '13
 Bizon, Gorbahn, Haisch, Zanderighi '16
 Degrassi, Giardino, Maltoni, Pagani '16
 Maltoni, Pagani, Shivaji, Zhao '17, '18
 Borowka, Duhr, Maltoni, Pagani, Shivaji, Zhao '18
 Nakamura, Shivaji '18
 Gorbahn, Haisch '19
- EW precision observables Degrassi, Fedele, Giardino '17

Kribs, Maier, Rzehak, Spannowsky, Waite '17

The problem is that other operators are $Z \sim \sim \sim \sim \sim \sim$ also likely to enter at the same level \Rightarrow requires global analysis

(example diagrams)

Direct Higgs boson pair production

gluon fusion: production channel with largest cross section

Plehn, Spira, Zerwas '96

Higgs boson pair production in gluon fusion

- NLO calculation: technically difficult 2-loop integrals (2 mass scales)
- approximations:
 - "Heavy Top Limit" (HTL, also called HEFT, "Higgs Effective Field Theory")

"Born-improved NLO HTL":

rescale NLO result in $m_t o \infty$ limit by $\mathcal{M}^{LO}(m_t)/\mathcal{M}^{LO}_{
m HEFT}$

Dawson, Dittmaier, Spira '98 (HPAIR) $K = \sigma_{NLO}/\sigma_{LO} \simeq 2$

supplemented with $1/m_t$ expansion: (±10%)

Grigo, Hoff, Melnikov, Steinhauser '13, '15; Degrassi, Giardino, Gröber '16

Note:

HEFT strictly valid only for $\sqrt{\hat{s}} \ll 2m_t$ HH production threshold: $2m_H < \sqrt{\hat{s}}$ \Rightarrow validity of HEFT limited to $250 \,\mathrm{GeV} < \sqrt{\hat{s}} < 340 \,\mathrm{GeV}$

Higgs boson pair production in gluon fusion

mass dependence in NLO real radiation ("FTapprox") -10%

Frederix, Hirschi, Mattelaer, Maltoni, Torrielli, Vryonidou, Zaro '14; Maltoni, Vryonidou, Zaro '14

- NNLO in $m_t \rightarrow \infty$ limit: +20%
 - total xs NNLO De Florian, Mazzitelli '13

- including all matching coefficients Grigo, Melnikov, Steinhauser '14
- **Supplemented with** $1/m_t$ **expansion:** Grigo, Hoff, Steinhauser '15
- **soft gluon resummation NNLL** Shao, Li, Li, Wang '13; De Florian, Mazzitelli '15 +9%
- differential NNLO De Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev '16

uncertainties due to missing full top mass dependence were unclear at that point

Higgs boson pair production in gluon fusion

NLO calculation with full top mass dependence

Borowka, Greiner, GH, Jones, Kerner, Schlenk, Schubert, Zirke '16

4 independent scales s12, s23, mH, mt

all integrals calculated numerically with

SecDec

Borowka, GH, Jones, Kerner, Schlenk, Zirke '15 Borowka, GH, Jahn, Jones, Kerner, Schlenk, Zirke '17,'19

meanwhile confirmed with independent calculation by Baglio, Campanario, Glaus, Mühlleitner, Spira, Streicher '18

based on full NLO calculation:

- q_T resummation NLL+NLO Ferrera, Pires '16
- full mass dependence in NNLO real radiation, "NNLO_approx" Grazzini, Kallweit, GH, Jones, Kerner, Lindert, Mazzitelli '18
- NNLL soft gluon resummation on top of NNLO_approx De Florian, Mazzitelli '18

Higgs boson pair invariant mass

for large invariant masses:

Born-improved NLO HEFT overestimates by about 50%, FTapprox by about 40% (at 14 TeV, worse at 100 TeV)

 $\sigma_{
m tot}$: FTapprox overestimates by about 14%

top quark loops resolved — HEFT has wrong scaling behaviour at high energies

high energy behaviour

full NLO + parton shower

Powheg and MG5_aMC@NLO + Pythia GH, Jones, Kerner, Luisoni, Vryonidou '17 Sherpa Jones, Kuttimalai '17

Powheg + Pythia 8.2, Powheg + Herwig 7.1 GH, Jones, Kerner, Luisoni, Scyboz including possibility to vary trilinear Higgs coupling also allows variations of top-Higgs Yukawa coupling

publicly available

POWHEG-BOX-V2: User-Process-V2/ggHH

• transverse momentum of one of the Higgs bosons:

inclusive in additional radiation, not very sensitive to shower differences

- transverse momentum of Higgs boson pair: NLO is first non-trivial order
- very sensitive to extra radiation
- Pythia8 produces additional hard sub-leading jets

HH@NLO + Sherpa

S. Jones, S. Kuttimalai '17

- differences in peak region due to different matching algorithms
- large pTHH region:

MG5_aMC@NLO results within (large) uncertainty bands

Powheg with $h_{\rm damp}=150,250,\infty$ not within $\mu_{PS}~$ variation band

compare POWHEG and MG5_aMC@NLO

MG5_aMC@NLO version 2.5.3: new shower starting scale Qsh picked with some probability distribution in shower_scale_factor $\times [0.1 H_T/2, H_T/2]$

new default shower starting scale matches onto NLO fixed order at large pThh $_{\rm 46}$

compare POWHEG and MG5_aMC@NLO

MG5_aMC@NLO version 2.5.3: new shower starting scale Qsh picked with some probability distribution in shower_scale_factor $\times [0.1 H_T/2, H_T/2]$

new default shower starting scale matches onto NLO fixed order at large pThh $_{\rm 46}$

variation of hard shower scale in Herwig7, compared to Pythia8

mass effects versus parton shower effects

mass effects versus parton shower effects

shower effects can be large but order(s) of magnitude smaller than difference to Born-improved HEFT

variation of the triple Higgs coupling

iso-contours for the total cross section

 $\sigma/\sigma_{
m SM}$ varying both, Yukawa coupling and κ_{λ}

variation of the triple Higgs coupling

dip in m_{hh} distribution near 350 GeV for c_{hhh} values around 2.4 $c_{hhh} = 0$ largest in this group

variation of the triple Higgs coupling

degenerate total cross sections have clearly distinct shapes

BSM couplings in the Higgs sector

non-linear EFT framework: Electro-weak chiral Lagrangian (EWChL) [Buchalla et al. '13]

Lagrangian relevant for $gg \rightarrow HH$ (at chiral dimension 4)

$$\mathcal{L} \supset -m_t \left(c_t \frac{h}{v} + c_{tt} \frac{h^2}{v^2} \right) \bar{t} t - c_{hhh} \frac{m_h^2}{2v} h^3 + \frac{\alpha_s}{8\pi} \left(c_{ggh} \frac{h}{v} + c_{gghh} \frac{h^2}{v^2} \right) G^a_{\mu\nu} G^{a,\mu\nu}$$

- 5 (possibly) anomalous couplings
- Goldstone fields: $U = \exp(2i\varphi^a T^a/v)$ (non-linear realisation)
- 3 scales: EW scale v, scale f of Higgs sector dynamics, cut-off scale $\Lambda=4\pi f$ \Rightarrow

• expansion parameters $\xi = v^2/f^2$ and $f^2/\Lambda^2 = 1/(16\pi^2)$ (loop factor)

- SMEFT assumes $\,\xi \ll 1$, expansion in powers of ξ

Relation to SMEFT

(restricted to Higgs sector + QCD)

SMEFT:

$$\Delta \mathcal{L}_{\text{dim6}} = \frac{\bar{c}_{H}}{2v^{2}} \partial_{\mu}(\phi^{\dagger}\phi) \partial^{\mu}(\phi^{\dagger}\phi) + \frac{\bar{c}_{u}}{v^{2}} y_{t}(\phi^{\dagger}\phi\,\bar{q}_{L}\tilde{\phi}t_{R} + \text{h.c.}) - \frac{\bar{c}_{6}}{2v^{2}} \frac{m_{h}^{2}}{v^{2}} (\phi^{\dagger}\phi)^{3} + \frac{\bar{c}_{ug}}{v^{2}} g_{s}(\bar{q}_{L}\sigma^{\mu\nu}G_{\mu\nu}\tilde{\phi}t_{R} + \text{h.c.}) + \frac{4\bar{c}_{g}}{v^{2}} g_{s}^{2}\phi^{\dagger}\phi\,G_{\mu\nu}^{a}G^{a\mu\nu}$$

EWChL: $\Delta \mathcal{L}_{d\chi \leq 4} = -m_t \left(\frac{c_t h}{v} + \frac{h^2}{v^2} \right) \bar{t} t - \frac{c_{hhh}}{2v} \frac{m_h^2}{2v} h^3$ $+ \frac{\alpha_s}{8\pi} \left(\frac{c_{ggh} h}{v} + \frac{c_{gghh}}{v^2} \frac{h^2}{v^2} \right) G^a_{\mu\nu} G^{a,\mu\nu}$ Instrument, $\bar{c}_H = \bar{c}_H - \bar{c}_H + 3\bar{c}_u$

relations: $c_t = 1 - \frac{\bar{c}_H}{2} - \bar{c}_u$, $c_{tt} = -\frac{\bar{c}_H + 3\bar{c}_u}{2}$, $c_{hhh} = 1 - \frac{3}{2}\bar{c}_H + \bar{c}_6$,

 $c_{ggh} = 2c_{gghh} = 128\pi^2 \bar{c}_g \; .$

non-linear EFT calculation + NLO QCD

Buchalla, Capozi, Celis, GH, Scyboz '18

non-linear EFT calculation + NLO QCD

examples of NLO diagrams: real radiation corrections 5-point 1-loop diagrams tree diagrams $\propto c_{ggh}$, c_{gghh}

non-linear EFT calculation + NLO QCD

K-factors $\sigma_{N(N)LO}/\sigma_{LO}$ as functions of the BSM couplings

NNLO rescaled HEFT $(m_t \rightarrow \infty)$ De Florian, Fabre, Mazzitelli '17 $c_3 = 1 + 10 \xi$,

SM values:
$$\xi = 0$$
 $c_{tt} = 1 + 0.35 \xi$
 $c_{g} = 0.15 \xi$,
 $c_{gg} = 0.15 \xi$.

NLO with full m_t dependence Buchalla, Capozi, Celis, GH, Scyboz '18

top mass effects very important!

Summary & Outlook

- it is likely that New Physics is (currently) hiding in small deviations
- precision calculations and -measurements become vital (control higher orders, **top mass effects**, shower uncertainties)

Summary & Outlook

- it is likely that New Physics is (currently) hiding in small deviations
- precision calculations and -measurements become vital (control higher orders, **top mass effects**, shower uncertainties)
- the Higgs sector is just starting to get explored (makes a case for future colliders!)

- it is likely that New Physics is (currently) hiding in small deviations
- precision calculations and -measurements become vital (control higher orders, **top mass effects**, shower uncertainties)
- the Higgs sector is just starting to get explored (makes a case for future colliders!)
- the trilinear Higgs coupling is a prime candidate for New Physics to show up

- it is likely that New Physics is (currently) hiding in small deviations
- precision calculations and -measurements become vital (control higher orders, **top mass effects**, shower uncertainties)
- the Higgs sector is just starting to get explored (makes a case for future colliders!)
- the trilinear Higgs coupling is a prime candidate for New Physics to show up
- other modified couplings also need to be taken into account → requires global EFT analysis

The Standard Model is unlikely to be the full picture

precision calculations/measurements may uncover the unexpected !

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

BACKUP SLIDES

dependence on shower parameters

compare Pythia6 and Pythia8

top quark mass effects

total cross sections at 14 TeV $\mu_0 = m_{HH}/2$

	$\sigma_{\rm LO}[{\rm fb}]$	$\sigma_{\rm NLO}[{\rm fb}]$	$\sigma_{\rm NNLO}[{\rm fb}]$
HEFT	$17.07^{+30.9\%}_{-22.2\%}$	$31.93^{+17.6\%}_{-15.2\%}$	$37.52^{+5.2\%}_{-7.6\%}$
B-i. HEFT	$19.85^{+27.6\%}_{-20.5\%}$	$38.32^{+18.1\%}_{-14.9\%}$	
$\mathrm{FT}_{\mathrm{approx}}$	$19.85^{+27.6\%}_{-20.5\%}$	$34.26^{+14.7\%}_{-13.2\%}$	
full m_t dep.	$19.85^{+27.6\%}_{-20.5\%}$	$32.91^{+13.6\%}_{-12.6\%}$	

PDF4LHC15_nlo_30_pdfas HXSWG: $\sigma'_{NNLL} = \sigma_{NNLL} + \delta_t \sigma_{NLO}^{\text{HEFT}} = 39.64^{+4.4\%}_{-6.0\%}$ $m_H = 125 \text{ GeV}, m_t = 173 \text{ GeV}$ uncertainties: $\mu_{R,F} \in [\mu_0/2, 2 \mu_0]$ (7-point variation)

NNLO approximations

\sqrt{s}	$13 { m TeV}$	$14 { m TeV}$	$27 { m TeV}$	$100 { m TeV}$
NLO [fb]	$27.78^{+13.8\%}_{-12.8\%}$	$32.88^{+13.5\%}_{-12.5\%}$	$127.7^{+11.5\%}_{-10.4\%}$	$1147^{+10.7\%}_{-9.9\%}$
$\rm NLO_{FTapprox}$ [fb]	$28.91{}^{+15.0\%}_{-13.4\%}$	$34.25^{+14.7\%}_{-13.2\%}$	$134.1^{+12.7\%}_{-11.1\%}$	$1220{}^{+11.9\%}_{-10.6\%}$
$NNLO_{NLO-i}$ [fb]	$32.69^{+5.3\%}_{-7.7\%}$	$38.66^{+5.3\%}_{-7.7\%}$	$149.3^{+4.8\%}_{-6.7\%}$	$1337{}^{+4.1\%}_{-5.4\%}$
$NNLO_{B-proj}$ [fb]	$33.42^{+1.5\%}_{-4.8\%}$	$39.58 {}^{+1.4\%}_{-4.7\%}$	$154.2^{+0.7\%}_{-3.8\%}$	$1406{}^{+0.5\%}_{-2.8\%}$
$NNLO_{FTapprox}$ [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$36.69^{+2.1\%}_{-4.9\%}$	$139.9^{+1.3\%}_{-3.9\%}$	$1224{}^{+0.9\%}_{-3.2\%}$
M_t unc. NNLO _{FTapprox}	$\pm 2.6\%$	$\pm 2.7\%$	$\pm 3.4\%$	$\pm 4.6\%$
$\rm NNLO_{FTapprox}/\rm NLO$	1.118	1.116	1.096	1.067

considerable reduction of scale uncertainties

 M_t uncertainties:

half the difference between NNLO_FTapprox and NNLO_NLO-improved

constraints on cg and top Yukawa couplings

Approximations

slide by Stephen Jones

Some two-loop integrals for gg to HH

Yukawa only (≤ 4-point)

Self-coupling (≤3-point)

Integrals Known $gg \to H$

Spira, Djouadi et al. 93, 95; Bonciani, P. Mastrolia 03,04; Anastasiou, Beerli et al. 06;

slide by Stephen Jones

Many integrals not known analytically, except: $H \rightarrow Z \gamma$ Bonciani, Del Duca, Frellesvig et al. 15; Gehrmann, Guns, Kara 15;

NLO automation

custom made

Monte Carlo program

- tree amplitudes
- infrared subtractions
- phase space integration/ event generation
- parton shower (optional)

- One-loop provider
 virtual amplitude
 - Blackhat
 - FeynArts
 - GoSam
 - Madloop
 - NJet
 - OpenLoops
 - Recola

Herwig7/Matchbox
 Gonovo

Powheg

Sherpa

- Geneva
- Vincia

all in one:

- MG5_aMC@NLO
- Helac-NLO
- Grace

collection of pre-computed processes:

MCFMVBFNLO