DArT mechanical design: pipes for DArT

Edgar Sánchez García (CIEMAT) edgar.sanchez@ciemat.es 3-04-2019

Summary

• We have three option for the pipes of the DArT chamber:

1. Top flange + pipes of stainless steel

2. Top flange + pipes of OFHC copper

3. Top flange of OFHC copper + pipes of standard copper

Option 1: stainless steel flange

• Assuming 2.5 kg for the top flange and the pipes. We obtain 1100 evt/week of background with a similar SS of the ArDM cryo.

			simulated	actual		RNs	activity	activity
detector	part	material	mass (kg)	mass (kg)	RN	in chain	(mBq/kg)	full chain
			100.000	1				
DART	vessel	şs	2.5	2.5	C060	1	11.21	11.21
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.5	2.5	K40	1	10.36	10.36
			2.5	2.5	Th232	10	6.37	63.7
			2.5	2.5	U238	14	3.42	47.88
DART	vessel	SS						

е	weight	events	events		
у	ev/w	in ROI	untagged ROI		
1	8.47E-03	1803.0	125.0		
8	5.64E-04	7.8	4.1		
6	4.82E-02	1728.0	664.2		
4	3.62E-02	1390.8	439.4		
E	vents/week =	3118.9	1103.6		

## **Option 2: OFHC copper**

- Ideal case, background expected < 8 evt/week for DArT vessel.
- We can not obtain the copper pipes from the same provider as the DArT vessel. Two options:
- Electroform copper pipes in LSC. The diameter of the recirculation tube is small (6 mm external) → it is hard to electroform this piece. Additionally, 1 mm thickness wall maybe is not enough compact to withstand a good vacuum.

- On Monday, I spoke with an Avactec commercial. He said to me that maybe Testbourne Ltd could provide these pipes. Waiting for answer of the company.

### **Option 3: OFHC + standard**

**COPE** radiopurity level it is important, but we can survive with levels of tens of mBq for the internal pipe (most critical piece).

• Do we need a special treatment for the oxygen?

			simulated	actual		RNs	activity	activity
detector	part	material	mass (kg)	mass (kg)	RN	in chain	(mBq/kg)	full chain
DART	int pipe	SS	0.02	0.02	C060	1	11.21	11.21
			0.02	0.02	K40	1	10.36	10.36
			0.02	0.02	Th232	10	6.37	63.7
			0.02	0.02	U238	14	3.42	47.88
DART	int pipe	SS						

weight	events	events
ev/w	in ROI	untagged ROI
6.78E-03	23.8	1.8
6.27E-03	2.0	1.1
3.85E-02	34.8	15.6
2.90E-02	26.4	10.8
Events/week	87.0	29.4