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Disclaimer

Giulio Andreotti: famous post-war italian politician
One of his famous quotes: “There are two kind of crazy people”
“Those that believe they are Napoleon”
“and those that want to make the trains run on time in Italy”
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There is a third kind:

those that want to make sense out of the top mass
measurements at hadron colliders ...
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Top and precision physics

From PDG:

∆Gµ/Gµ = 5 · 10−7; ∆MZ/MZ = 2 · 10−5;

∆α(MZ )/α(MZ ) =

{
1 · 10−4(Davier et al.; PDG)
3.3 · 10−4(Burkhardt, Pietrzyk)

Now that MH is known, tight constraint on MW -mt ,
(depending on how aggressive is the error on α(MZ )).

But: precision on MW is more important now ...
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Top and vacuum stability

Degrassi et al. 2012
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107

109

1010

1012

115 120 125 130 135
165

170

175

180

Higgs mass Mh in GeV

Po
le

to
p

m
as

s
M

t
in

G
eV

1,2,3 Σ

Instability

Stability

Meta-stability

With current value of Mt and MH the vacuum is metastable.
No indication of new physics up to the Plank scale from this.
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Top and vacuum stability

Degrassi et al. 2012
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Mt = 171.3 GeV
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The quartic coupling λH becomes tiny at very high field values,
and may turn negative, leading to vacuum instability.
Mt as low as 171 GeV leads to λH → 0 at the Plank scale.
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Top Mass Measurements

 [GeV]topm
165 170 175 180 185

ATLAS+CMS Preliminary  = 7-13 TeVs summary, topm
WGtopLHC

November 2018

World comb. (Mar 2014) [2]

stat
total uncertainty

total  stat

 syst)± total (stat ± topm        Ref.s

WGtopLHCLHC comb. (Sep 2013) 7 TeV  [1] 0.88)± 0.95 (0.35 ±173.29 

World comb. (Mar 2014) 1.96-7 TeV  [2] 0.67)± 0.76 (0.36 ±173.34 

ATLAS, l+jets 7 TeV  [3] 1.02)± 1.27 (0.75 ±172.33 

ATLAS, dilepton 7 TeV  [3] 1.30)± 1.41 (0.54 ±173.79 

ATLAS, all jets 7 TeV  [4] 1.2)± 1.8 (1.4 ±175.1 

ATLAS, single top 8 TeV  [5] 2.0)± 2.1 (0.7 ±172.2 

ATLAS, dilepton 8 TeV  [6] 0.74)± 0.85 (0.41 ±172.99 

ATLAS, all jets 8 TeV  [7] 1.01)± 1.15 (0.55 ±173.72 

ATLAS, l+jets 8 TeV  [8] 0.82)± 0.91 (0.39 ±172.08 

ATLAS comb. (Oct 2018) 7+8 TeV  [8] 0.41)± 0.48 (0.25 ±172.69 

CMS, l+jets 7 TeV  [9] 0.97)± 1.06 (0.43 ±173.49 

CMS, dilepton 7 TeV  [10] 1.46)± 1.52 (0.43 ±172.50 

CMS, all jets 7 TeV  [11] 1.23)± 1.41 (0.69 ±173.49 

CMS, l+jets 8 TeV  [12] 0.48)± 0.51 (0.16 ±172.35 

CMS, dilepton 8 TeV  [12] 1.22)± 1.23 (0.19 ±172.82 

CMS, all jets 8 TeV  [12] 0.59)± 0.64 (0.25 ±172.32 

CMS, single top 8 TeV  [13] 0.95)± 1.22 (0.77 ±172.95 

CMS comb. (Sep 2015) 7+8 TeV  [12] 0.47)± 0.48 (0.13 ±172.44 

CMS, l+jets 13 TeV  [14] 0.62)± 0.63 (0.08 ±172.25 

CMS, dilepton 13 TeV  [15] 0.69)± 0.70 (0.14 ±172.33 

CMS, all jets 13 TeV  [16] 0.76)± 0.79 (0.20 ±172.34 
[1] ATLAS-CONF-2013-102
[2] arXiv:1403.4427
[3] Eur.Phys.J.C75 (2015) 330
[4] Eur.Phys.J.C75 (2015) 158
[5] ATLAS-CONF-2014-055
[6] Phys.Lett.B761 (2016) 350

[7] JHEP 09 (2017) 118
[8] arXiv:1810.01772

[9] JHEP 12 (2012) 105
[10] Eur.Phys.J.C72 (2012) 2202
[11] Eur.Phys.J.C74 (2014) 2758

[12] Phys.Rev.D93 (2016) 072004

[13] EPJC 77 (2017) 354
[14] arXiv:1805.01428
[15] CMS PAS TOP-17-001
[16] CMS PAS TOP-17-008

DIRECT
MEASUREMENTS

(roughly, from the
mass of the system
of decay products).
The most precise
method as of now.
But:
what mass is it?
No mass attribute
in the plot ...
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Theory issues

I The measurement is performed by reconstructing a top mass
peak out of a reconstructed W and a b-jet.

I The reconstructed mass is only loosely related to the top mass
(i.e. it cannot be identified with the top mass, for obvious
reasons: mass of a colourless system).

I The extracted mass is the mass parameter in the Monte Carlo
that yields the best fit to the reconstructed mass distribution.

So:

� in which renormalization scheme is the MC mass parameter?
Pole mass? MS mass?

� It has been argued that since MC are Leading-Order, they
can’t distinguish between Pole and MS mass
(the difference is around 10 GeV ...).
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Selected Th. results relevant to top mass measurements

I Narrow width tt̄ production and decay at NLO,
Bernreuther,Brandenbourg,Si,Uwer 2004, Melnikov,Schulze 2009.

I lνlνbb̄ final states with massive b, Frederix, 2013,
Cascioli,Kallweit,Maierhöfer,Pozzorini, 2013.

I NNLO differential top decay, Brucherseifer,Caola,Melnikof 2013.

I NLO+PS in production and decay, Campbell,Ellis,Re,PN

I NNLO production, Czakon,Heymes,Mitov,2015.

I lνlνbb̄ + jet Bevilacqua,Hartanto,Kraus,Worek 2016.

I Approx. NNLO in production and exact NNLO in decay for tt̄.
Gao,Papanastasiou 2017.

I Resonance aware formalism for NLO+PS: Ježo,PN 2015;

I Off shell + interference effects+PS, Single top,
Frederix,Frixione,Papanastasiou,Prestel,Torielli, 2016

I Off shell + interference effects+PS, lνlνbb̄,
Ježo,Lindert,Oleari,Pozzorini,PN, 2016.
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Alternative mass-sensitive observables

I Butenschoen,Dehnadi,Hoang,Mateu,Preisser,Stewart,2016 Use
boosted top jet mass + SCET.

I Agashe,Franceschini,Kim,Schulze,2016: peak of b-jet energy
insensitive to production dynamics.

I Kawabata,Shimizu,Sumino,Yokoya,2014: shape of lepton
spectrum. Insensitive to production dynamics and claimed to
have reduced sensitivity to strong interaction effects.

I Frixione, Mitov: Selected lepton observables.

I Alioli, Fernandez, Fuster, Irles, Moch, Uwer, Vos ,2013;
Bayu etal: Mt from tt̄j kinematics.

I tt̄ threshold in γγ spectrum (needs very high luminosity),
Kawabata,Yokoya,2015
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High Luminosity LHC: Expectations

I CMS Projection: 0.1%
accuracy at 3ab−1, 14 TeV;

I Improvements expected
from high statistics

I More effective constraints
on models using differential
distributions

I More possibilities from
data driven constraints.

Recent discussion of th. issues by Hoang,Corcella,Yokoya,P.N.
in SM Physics at the HL-LHC and HE-LHC, arXiv:1902.04070.
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Alternative observables

Rather than e+e− → tt̄ at threshold, we may also look at the γγ
spectrum at LHC Kawabata,Yokoya, 2016. It is unclear whether
this can be done even at the High Luminosity LHC ...
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From the total cross section and tt̄j kinematics
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 GeV-4.70 +5.20167.50 
), 1.96 TeVt(tσD0 

PLB 703 (2011) 422
MSTW08 approx. NNLO

 GeV-3.20 +3.40172.80 ), 1.96 TeVt(tσD0 
PRD 94, 092004 (2016)
MSTW08 NNLO

 GeV-2.50 +2.50169.10 )/dx, 1.96 TeVt(tσD0 d
D0 Note 6473-CONF (2016)
MSTW08 NNLO

 GeV-2.60 +2.50172.90 ), 7+8 TeVt(tσATLAS 
EPJC 74 (2014) 3109

 GeV-2.11 +2.28173.70 +j shape, 7 TeVtATLAS t
JHEP 10 (2015) 121

 GeV-1.80 +1.70173.80 ), 7+8 TeVt(tσCMS 
JHEP 08 (2016) 029
NNPDF3.0

 GeV-2.70 +2.70170.60 ) 13 TeVt(tσCMS 
arXiv:1701.06228 (2017)
CT14

 GeV-3.66 +4.52169.90 +j shape, 8 TeVtCMS t
TOP-13-006 (2016)

 GeV-0.76 +0.76173.34 
World combination
ATLAS, CDF, CMS, D0
arXiv:1403.4427, standard measurements

July 2017Top-quark pole mass measurements

It is claimed that since higher
order calculations (NNLO for
total cross section, NLO for
tt̄j shape variables) are used
in this determination, one is
entitle to specify the scheme
used for the mass.

In the figure they are quoted
as “pole mass measurement”.

14 / 52



I The “pole mass” attribute is not given to direct measurement.

I In some experimental papers and talks, direct measurements
are reported as “Monte Carlo Mass” measurements, often
stating that they need some theoretical interpretation.

I “Monte Carlo Mass” measurements are often interpreted as
pole mass measurements by theorists. See for example
I Degrassi etal, 2012 on the EW vacuum stability, adding a

further 250 MeV error to direct measurements.
I Ciuchini etal, 2017 in Global EW fits, adding a further 500

MeV error to direct measurements.

I Theorist have done work in proposing alternative methods to
avoid the issues on direct measurements; however, the
alternative methods are generally inferior in precision.

As a result, the most precise experimental results on mt are left in
a limbo, waiting for some illuminating theoretical interpretation
that is not in sight.
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High-school quiz on top mass measurement

Tick the correct statements:

� Direct top mass measurements measure the Pole Mass.

� Direct top mass measurements measure the Monte Carlo Mass.

� Direct top mass measurements measure the Monte Carlo Mass. but you
can pretend that it is the pole mass, just inflate the error a bit.

� The top is the only SM particle with more than one mass.

� You should use only leptons to avoid hadronization uncertainty.

� You should use at least NLO calculations to measure the pole mass.

� The top pole mass has renormalons, you should stay away from it.

• The MC mass differs from the pole mass by
� terms of order mαS ; � terms of order ΛQCD; � terms of order αSΓt .

• The Pole Mass renormalon ambiguity is
� ≈ 1GeV; � ≈ 250 MeV; � ≈ 200 MeV; � ≈ 110 MeV.
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What is being done

I Explore MC model sensitivity, for example in colour
reconnection (Argyropoulos,Sjöstrand,2014;
Christiansen,Skands 2015).

I Model non-perturbative effects using parton showers, and
assess their uncertainties by varying shower parameters,
hadronization parameters, and MC implementations (Ferrario
Ravasio,Ježo,Oleari,P.N.2018).

I Seek observables with reduced MC parameter sensitivity
(Corcella,Franceschini,Kim,2017; Andreassen,Schwartz 2017;
Hoang,Mantry,Pathak,Stewart 2017).

I Directly address the theoretical problem in field theory, also in
simplified contests. This can lead to insights such that at
least some questions may be answered.
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Directly addressing the theoretical problem ...

I In a very influential paper, Hoang and Stewart (2008) state
“It is not the pole mass that is measured at the Tevatron”.

I This point of view has been further explored in a sequel of
papers; in the last one (Hoang,Plätzer,Samiz 2018) it is
claimed that the Monte Carlo mass parameter has a
well-defined relation to some short-distance mass.

I All this, and previous publications refer to the mass of an
ultra-relativistic top jet, (NOT to the mass of the top decay
products; shower MC’s are correct only for radiation from
ultrarelativistic particles). The mass of an ultrarelativistic top
jet can be computed analytically in terms of a well defined
mass. This mass can be compared to the MC mass parameter
used to describe the same quantity.

I The 2008 paper is often quoted as the origin of the “Monte
Carlo Mass” concept.
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Directly addressing the theoretical problem ...

I The differences between the MC and Pole mass found by
Hoang are parametrically of the order of the Shower cutoff
times αs .

I Although this does not apply directly to the mass measured in
direct measurements, it is not unlikely that differences of this
order are present also in that case.

I Whether differences of this order justify the original
statement, (i.e. direct mass 6= pole mass) is questionable.

I Hoang’s 2008 paper is often quoted as the origin of the
“Monte Carlo Mass” concept.

For criticism to the “Monte Carlo Mass” concept, see P.N.2018.
For a view agreed upon by more authors, see the HE-HL-LHC
arXiv:1902.04070.
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Our task

I We desperately need frameworks where the answer to
questions are not just opinions.

I We want to explore theoretically the non-perturbative
corrections in a framework that covers direct measurements.

I Some non-perturbative effects are connected to the factorial
growth of the perturbative expansion coefficients. We want to
start from these.

I We begin by simplifying the theoretical context as much as we
can, but without abandoning the need to study the mass
determination from the decay products of an unstable
coloured particles at modest velocity.
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ABC of I.R. Renormalons

All-orders contributions to QCD amplitude of the form

∫ m

0

dkp αS(k2) =

∫ m

0

dkp αS(m2)

1 + b0αS(m2) log k2

m2

= αS(m2)
∞∑
n=0

(2b0αS(m2))n
∫ m

0

dkp logn m

k︸ ︷︷ ︸
pnn!

.

Asymptotic expansion.
I Minimal term at nmin ≈ 1

2pb0αS (m2)
.

I Size of minimal term: mpαS(m2)
√

2πnmine
−nmin ≈ Λp

QCD.

I Typical scale dominating at order αn+1
S : m exp(−np).

I OPE connection; for a short distance process:∫
d4l(ph.sp) l2(gauge inv.)l−2(gluon prop.) ∝ Λ4(i.e. a G 2 VeV).
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Motivation

I Linear (i.e. p = 1) renormalons may affect top mass
measurements at order Λ (near the present experimental
accuracy).

I Until now, only the top pole mass renormalon has received
some attention.

I Several other sources of linear renormalons come into play in
top mass measurements (for example, from jet requirements).
What is their structure, and what is their interplay with the
pole mass renormalon?

I There is a temptation to use resummation to parametrize
linear non perturbative effects in top mass measurement. Is
this sound?
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Beneke and Braun, arXiv:hep-ph/9506452

Abstract:

Their calculation: leading Nf one gluon correction:
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Our work: compute top mass sensitive observables in
leading Nf one gluon correction.

We consider a simplified production framework W ∗ →Wtb̄:

W ∗

W

b

b̄

(i.e. no incoming hadrons). However:

I The b is taken massless, the W is taken stable, but the top is
taken unstable, with a finite width.

I We can examine any infrared safe observable, no matter how
complex.
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Diagrams up to leading Nf one gluon correction
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All-order result

Introducing the notation

I Φb, phase space for Wbb̄;

I Φg , phase space for Wbb̄g∗, where g∗ is a massive gluon with
mass λ,

I Φqq̄, phase space for Wbb̄qq̄

the all-order result can be expressed in terms of

I σb(Φb), the differential cross section for the Born process;

I σv (λ,Φb), the virtual correction to the Born process due to
the exchange of a gluon of mass λ;

I The real cross section σg∗(λ,Φg∗), obtained by adding one
massive gluon to the Born final state;

I The real cross section σqq̄(Φqq̄), obtained by adding a qq̄
pair, produced by a massless gluon, to the Born final state;
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All-order result

Consider a (IR safe) final state observable O. Define:

N(0) =

[∫
dΦb σb

]−1

, 〈O〉b = N(0)

∫
dΦb σb(Φb)O(Φb) ,

Ṽ (λ) = N(0)

∫
dΦb σ

(1)
v (λ2,Φb)

[
O(Φb)− 〈O〉b

]
,

R̃(λ) = N(0)

∫
dΦg∗ σ

(1)
g∗ (λ2,Φg∗)

[
O(Φg∗)− 〈O〉b

]
,

∆̃(λ) =
3π

αSTF

λ2 N(0)

∫
dΦqq̄ δ(k2

qq̄ − λ2)σ
(2)
qq̄ (Φqq̄)× [O(Φqq̄)− O(Φg∗)]

〈O〉b + Ṽ (λ) + R̃(λ) is the average value of O in a theory with a
massive gluon with mass λ, accurate to order αS .

Notice: Ṽ (λ) + R̃(λ) has a finite limit for λ→ 0, while each
contribution is log divergent.
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defining T̃ (λ) ≡ Ṽ (λ) + R̃(λ) + ∆̃(λ), our final result is

〈O〉 = 〈O〉b +
3π

αSTF

∫ ∞
0

dλ

π

d

dλ

[
T̃ (λ)

]
atan

(
αSπb0

1 + αSb0log
λ2

µ̃2

)
(1)

where µ̃ ≡ µ exp(5/6).
This has the same renormalon structure of the example we
considered at the beginning. Now the atan function has an
unphysical discontinuity near the Landau pole

λ2 = µ̃2 exp

[
1

αS(µ)b0

]
= Λ2

QCD exp(5/3). (2)

If we thus have:
T̃ (λ) = a + b λ+O

(
λ2
)

(3)

the integration has an ambiguity of order bΛQCD, i.e. a Linear
Renormalon.
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Comments

I In order to get our results, we need lim
λ2→∞

T̃ (λ2) = 0 .

This happens if we use the Pole Mass Scheme for mt .
I The need to include the ∆ term has a long story:

I Seymour,P.N. 1995, I.R. renormalons in e+e− event shapes.
I Dokshitzer,Lucenti,Marchesini,Salam, 1997-1998 Milan factor

I We compute T (λ) numerically. The λ→ 0 limit implies the
cancellation of two large logs in V and R. However, the
precise value at λ = 0 can also be computed directly by
standard means (which we do).
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Changing the mass scheme

The relation of the pole mass as a function of the MS mass in the
large NF approximation is well known (Beneke, 1999)

m = m̄[1 + Rf (αS , µ, m̄) + Rd(αS , µ, m̄)],

Rf = − 3π

αSTF

∫ ∞
0

dk

π

drf (λ)

dλ
atan

−αSπb0

1 + αSb0 log λ2

µ̃2

rf (λ) = −αS

CF

2

λ

m
+O

(
λ2

m2

)
. (4)

We can easily convert our results to the MS scheme:

〈O〉b(m,m∗) = 〈O〉b(m,m∗) +

{
∂〈O〉b(m,m∗)

∂m
(m −m) + cc

}
For the leading renormalon this amounts to

T̃ (λ)→ T̃ (λ)− ∂〈O〉b(m,m∗)

∂Re(m)

CFαs

2
λ+O(λ2) .
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Changing the mass scheme

The pole mass, when expressed in terms of the MS mass, has a
renormalon, i.e. an uncertainty of order Λ. If the MS mass is to be
considered a fundamental parameter of the theory, this means that
the pole mass has a physical uncertainty.
Can we argue that if we take the pole mass as a fundamental
parameter it is the MS mass that has a physical uncertainty?

The answer is NO!

QCD is defined by its short distance Lagrangian, and its defining
fundamental parameters are the short distance ones!
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Selected Results
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Total cross section
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No linear renormalon in MS scheme!
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Total cross section

I For k < Γ: no renormalon in the physics! The top finite width
screens the soft sensitivity of the cross section.
The renormalon is there only if it is present in the mass
counterterm; thus, it is not there in the MS scheme.

I What about k � Γ?
This is the narrow width limit: the cross section factorizes
into a production cross section and a partial width.
The former has no physical renormalons for obviour reasons.
The latter does not have them for less obvious reasons.

So, the mass from the total σ is free of linear power corrections.
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Total cross section with cuts
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35 / 52



Total cross section with cuts
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The renormalon is there also in MS scheme!
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Reconstructed top mass
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Reconstructed top mass
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Reconstructed top mass
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I In the narrow width limit, we can separate production and
decay (they don’t interfere). The cross section factorizes, and
there exists a “Monte Carlo Truth” for the top decay products.

I We can verify that for large radii, the mass of the
reconstructed top using only MC-truth top decay products is
very close to the “blind” reconstructed mass.
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Reconstructed top mass
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Leptonic Observables
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Consider 〈EW 〉.
For k � Γ, the slope is
roughly 0.45.
The MS conversion
would add −0.067.
It seems that physical
linear renormalons are
present also in leptonic
observables.

But, for λ� Γ, the slope of T (λ) decreases, approaching 0.067!
The renormalon seems to cancel in the MS scheme!
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Leptonic Observables

Two questions:

I Our narrow width result seems to be in contrast with what
found in heavy flavour inclusive decays, where no renormalons
are present for leptonic observables, if the heavy flavour mass
is expressed in the MS scheme (Beneke,Braun,Zakharov,1994;
Bigi etal,1994).
We have verified, however, that if 〈EW 〉 is computed in the
top rest frame, no renormalons are present. So: no
contradiction there.

I About the renormalon cancellation for finite width: we have
also verified it for larger width values.

Is this an exact statement?
The answer is Yes!!
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Back to the basics

Back to the theory of soft cancellation.

I Normally one worries about cancellation of divergences, i.e.
terms that go like log λ (where now the gluon mass λ serves
as an infrared cutoff.

I We want to check if also terms that are linear in λ do cancel.

I The strategy: if our amplitudes can be analytically continued
to complex energies, one can apply the euclidean power
counting to examine its infrared sensitivity.

I A very transparent way to carry out such analysis is by going
to Old Fashion Perturbation Theory.
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Old Fashion Perturbation Theory

The propagator denominators in a Feynmann diagram can be split
into an advanced and a retarded part:

i

λ2 −m2 + iε
=

i

2Ek,m

[
1

k0 − Ek,m + iε
+

1

−k0 − Ek,m + iε

]
.

The time Fourier transform of the first term vanishes for negative
time, while for the second term it vanishes for positive time∫

dk0

2π

i exp(−ik0t)

k0 − Ek,m + iε
= θ(t) exp(−iE 0

k,mt)∫
dk0

2π

i exp(−ik0t)

−k0 − Ek,m + iε
= θ(−t) exp(iE 0

k,mt)
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Old Fashion Perturbation Theory

also true for unstable particles:

i

λ2 −m2 + imΓ
=

i

2Ek,m,Γ

[
1

k0 − Ek,m,Γ
+

1

−k0 − Ek,m,Γ

]
,

where

Ek,m,Γ =

√
k2 + m2 − imΓ,

so that Ek,m,Γ has a negative imaginary part. As a consequence,
we will also have∫

dk0

2π

i exp(−ik0t)

k0 − Ek,m,Γ + iε
= θ(t) exp(−iE 0

k,m,Γt)∫
dk0

2π

i exp(−ik0t)

−k0 − Ek,m,Γ + iε
= θ(−t) exp(iE 0

k,m,Γt)

and both functions will have exponential damping for large positive
(negative) time. But the θ functions are there as before.
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Old Fashion Perturbation Theory

A straightforard manipulation leads to the old fashion perturbation
theory rules. In time ordered graphs:
I Split propagators into an advanced and retarded part, and

split each Feynmann graph into a sum of time ordered graphs.
I Replace propagators with 1/(2Ek,m)
I Put all propagator energies in numerators equal to their

on-shell values.
I Include all 3-momentum integrals.
I For each external incoming momentum, include a line coming

from −∞ or going to +∞, carrying momentum and energy
with corresponding sign.

I For each intermediate state, include an energy denominator

i

e − ei + iε

where e is the sum of the incoming energy (from the lines to
−∞) and ei is the sum of the energies of the lines in the
intermediate state. 47 / 52



Old Fashion Perturbation Theory

1

q0 − Ek+l − Ek−q+l + iε

1

q0 − Ek − El − Ek−q+l + iε

1

q0 − Ek − Ek−q + iε

Singularities are present only if the momentum integration cannot
be displaced in the complex plane away from the poles.
This simply leads to the threshold singularities, and to the Landau
conditions for anomalous thresholds.
Away from those, the graph is an analytic function of q0.
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Old Fashion Perturbation Theory

I This leads to KLN cancellation of soft singularities. But it
leads to more: the soft sensitivity is the same when q0 picks
up a finite imaginary part!

I The energy denominators do not count any more for the soft
sensitivity. Only the d3l/El counts (same sensitivity as in
Euclidean power counting: d4l/l2. Two more powers of l
come from gauge invariance, leading to 4th order power
corrections).
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back to EW

Only 2,3,4 cuts should be con-
sidered. But:
1 and 5 denominators have op-
posite imaginary part of order Γ.

Im

[
1

E−EW−Eb,2−E
b̄,1

+iε
1

E−EW−Eb,3−E
b̄,1

−Eg,3+iε
1

E−EW−Eb,3−E
b̄,4

+iε

]

Still analytic, but the imaginary part of q0 cannot exceed Γ.
So: soft sensitivity higher than linear for scales below Γ.
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Conclusions

I This work is addressing theoretical questions having to do
with the high-order perturbative structure, in its relation to
power corrections.

I Many simplifying assumptions were made; some of them mey
be removed in the future.

I In spite of the simplifying assumption, several results have
implications even for current measurements:
I Although there are good reasons to believe that the total cross

section is not affected by linear renormalons, as soon as we
introduce acceptance cuts, linear corrections, especially due to
jets, do appear.

I For observables that do not depend upon jets, the finite width
of the top seems to screen linear renormalon effects. Leptonic
observables could benefit from this. In practice, however, this
feature does not help at the moment, since it requires very
high order calculations.

I Leptonic observables are also affected by linear renormalons,
unless one goes at very high order in their perturbative
calculation. 51 / 52



Prospects

There are several directions in which this work can be extended.

I Study observables where jets are calibrated. See if linear
renormalons are reduced, and to what extent.

I Does jet trimming reduce linear renormalon effects?

I In general, are there “better” observables from this point of
view?
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