

Luigi Cosentino

Neutron cross section measurements for astrophysics and applications at nTOF facility@CERN

Motivation: Why is a neutron beam facility useful?

Neutron induced reactions are strongly involved in several scientific and technological fields

Nuclear Astrophysics

- R&D of new generation nuclear reactors
- New therapies in medicine
- ... and many others

Motivation: Why is a neutron beam facility useful?

Neutron induced reactions are strongly involved in several scientific and technological fields

- Nuclear Astrophysics
- R&D of new generation nuclear reactors
- New therapies in medicine
- ... and many others

Measurements of accurate neutron cross sections are crucial High quality neutron sources:

- High luminosity
- Wide energy range

Where?

n_TOF (neutron Time Of Flight) at CERN

(On a proposal of Carlo Rubbia. Operating since 2001)

- Synthesis of the elements in the Universe
- Nuclear Power Reactors
- Neutron Therapy

- (Synthesis of the elements in the Universe)

- Nuclear Power Reactors
- Neutron Therapy

Nucleosyntesis in the Universe

Luigi Cosentino - Workshop SPES - 29/30 January 2019 - Ferrara

The stellar nucleosynthesis

The slow neutron capture process (*s*-process)

Istituto Nazionale di Fisica Nucleare LABORATORI NAZIONALI DEL SUD

Along the β -stability valley

Nucleosynthesis of heavy elements through 64EU ⁶³Cu ⁶²Cu neutron captures and successive β -decay $\tau_n >> \tau_\beta$ 69.2 9.74 m 12.7 h 62Ni 60**NI** <u>61Ni</u> ⁶⁴Ni 63NI If $\tau_{\beta} \sim \tau_{n}$ branching points 26.2% 1.14% 3.63% 100 y 0.93% \Rightarrow several paths are possible ⁵⁹Co **ACO** ⁵⁸Co ⁶¹Co 153**EU** 70.86 d 100% 5.272 y 1.65 h seed 127EII 52.13 % 8.59 v ¹⁵²Sm 153Sm n ⁵⁸Fe ⁵⁶Fe ⁵⁷Fe ⁶⁰Fe ⁶¹Fe ¹⁴⁹Sm -¹⁵⁰S 13.82 % 26.75% 1.93 d 91.7% 0.28% $1.5 \cdot 10^{6} \text{ y}$ 6 m 2.2%

 $\sigma_{(n,\gamma)}$ is a key physical quantity.

Need of new and accurate neutron cross-sections

to refine the models of stellar nucleosynthesis

The rapid neutron capture process (*r*-process)

Under those extreme neutron-rich conditions, atomic nuclei capture neutrons becoming increasingly heavy, with the reaction path running close to the neutron dripline $\tau_n \ll \tau_b$

Fission Recycling Cycles

Neutron-induced fission *reactions play a fundamental role*

New experimental data on actinides are required to produce more reliable r-process models

- Synthesis of the heavy elements in the Universe
- (Nuclear Power Reactors
- Neutron Therapy

Nuclear Technology for Energy production

(Fission and fusion nuclear reactors)

IAEA estimates an increase of nuclear energy usage between 35% and 90% before 2030

Development of new nuclear technologies

- IV generation fission reactors
- Transmutation of nuclear waste
- Fusion reactors
- Structural materials

Reactor physics in Gen IV and ADS

The development of Gen IV fast reactors requires data on minor actinides

Apart for ²⁴⁵Cm, minor actinides present a **fission threshold** around 1 **MeV**.

Data in the fast energy region are required with high accuracy, to minimize uncertainties in calculations for reactor design and safety parameters.

Damage on structural materials in fusion reactors

- Activation
- Transmutation
- Gas production due the reactions (n,p), (n,α) on various elements (Fe, V, W, Cr, Mo,...)

Strong impact to limit the lifetime of the reactor components.

Needs of new **neutron data**

- Synthesis of the heavy elements in the Universe
- Nuclear Power Reactors
- (Neutron Therapy)

Nuclear Medicine: Boron Neutron Capture Therapy

 $^{14}N(n,p) \rightarrow$ main contribution to the dose in healthy tissue.

 $^{35}Cl(n,p) \rightarrow$ relevant in many tissues (brain, skin).

³³S(n, α) \rightarrow as adjuvant to ¹⁰B.

High quality measurements require neutron beams with:

- High energy resolution
- High neutron flux

Solution: Pulsed neutron beam produced by spallation on a lead target using a high intensity proton beam

Wide energy range neutron beam

The n_TOF Facility

Proton Synchrotron beam: high energy, high peak current, low duty cycle

Pulsed Proton beam with frequency ≈ 0.8 Hz

7.10¹² protons/pulse ~ 300 neutrons/proton!

- E.Chiaveri et al., Nuclear Data Sheets Volume 119, May 2014, Pages 1-4
- F.Gunsing et al., EPJ Web of Conferences 146, 11002 (2017)

The experimental Areas

	EAR1 (since 2001)	EAR2 (since 2014)
Neutron flux	High (10 ⁶ n/bunch)	Very high (10 ⁸ n/bunch)
Energy range	Very wide (therm. – GeV)	Wide (therm. – 100 MeV)
Energy resolution	Very good (10 ⁻⁴)	Good (10 ⁻³)
	well suitable to study resonances	short lived radioactive isotopes, low cross sections

M.Barbagallo et al., Eur. Phys. J. A 49, (2013) 1-11 M.Sabaté-Gilarte et al., Eur. Phys. J. A 53 (2017) 53: 210

The experimental Areas

	EAR1 (since 2001)	EAR2 (since 2014)
Neutron flux	High (10 ⁶ n/bunch)	Very high (10 ⁸ n/bunch)
Energy range	Very wide (therm. – GeV)	Wide (therm. – 100 MeV)
Energy resolution	Very good (10 ⁻⁴)	Good (10 ⁻³)
	well suitable to study resonances	short lived radioactive isotopes, low cross sections

M.Sabaté-Gilarte et al., Eur. Phys. J. A 53 (2017) 53: 210

The experimental Areas

Instrumentation: neutron Flux measurement

SIlicon MONitor for neutron flux measurement

Instrumentation: neutron beam profiler

5cm x 5cm double-sided strip SiLiF detector 25 strips, 2mm x 5cm

Comparison to other facilities

Luigi Cosentino - Workshop SPES - 29/30 January 2019 - Ferrara

Comparison to other facilities

Luigi Cosentino - Workshop SPES - 29/30 January 2019 - Ferrara

The experimental apparatus

Charged particles (n,cp)

Detectors for neutron capture

C₆D₆ (Deuterated benzene liquid scintillator)

• low neutron sensitivity device

Total Absorption Calorimeter (TAC)

- ✓ 4π with high efficiency (40 BaF₂ encapsulated in carbon fibred charged with ¹⁰B). Neutron sensitivity < 1%
- ✓ high background rejection

Detectors for fission reactions

Fission Chambers

- Fission fragments detection also in coincidence
- Sensitivity up to 1GeV (with PPAC)
- Low sensitivity to $\boldsymbol{\gamma}$

Detectors for fission reactions and light charged particles (p,t,α...)

MicroMegas

- High Signal to noise ratio

Silicon detectors (PAD, strip)

- Telescopes ΔE-E
- In sandwich mode along the beam line (low neutron sensitivity)

Measurements

Capture (n,γ)

- ^{24,25,26}Mg
- ^{54,56,57}Fe
- ^{58,62,63}Ni
- ^{69,71}Ga
- ^{70,72,74,76}Ge
- 90,91,92, <mark>93</mark>,94,96**Zr**
- ¹³⁹La
- ¹⁴⁰Ce
- ¹⁴⁷Pm
- ¹⁵¹Sm
- ^{154,155,157}Gd

- ¹⁷¹Tm
- ²³²Th
 - ^{186,187,188}Os
- 203,204**T**
- 204,206,207,208Pb
- ²⁰⁹Bi
 - 233,234U
 - ²³⁷Np, ²⁴⁰Pu
 - ²⁴³Am
 - ^{244,246}Cm

Fission (n,f) 233,234,235,236,238U 232Th 209Bi 237Np 241,243Am, 245Cm natPb

> 150 papers, including :

- **42** *Physical Review C*
- **12** Nuclear Data Sheets
- **10** The European Physical Journal A
- **4** Physical Review Letters

> 40 PhD Thesis

...

Big Bang Nucleosynthesis:

The Cosmological Lithium Problem

(feasible thanks to availability of a high flux in EAR2)

Luigi Cosentino - Workshop SPES - 29/30 January 2019 - Ferrara

0.2

1

A recent experiment related to the s-process

10² 10³ Neutron energy [eV]

10

Very low cross sections

(1° bottleneck of s process N=50)

⁸⁹Y: 13 - 21 mb @ 30 keV ⁸⁸Sr: 5 - 9 mb @ 30 keV

Discrepancies in literature for the **MACS**.

Large deviation with respect to literature have been observed, specially for ⁸⁸Sr.

Analysis is in progress.

10⁵

10⁴

^{155,157}Gd(n,γ) burnable neutron poison

To increase the efficiency in a fission reactor, the amount of 235 U must be enhanced. It may imply safety issues at the reactor start. This effect can be compensated by introducing neutron poison. New measurement for En < 1 keV

M. Mastromarco, A. Manna, et al., Eur. Phys. J. A (2019) 55: 9.

Cross section of ²³⁵U(n,f) @ 10-30 keV

The 235 U(n,f) cross section respect the reference reactions 6 Li(n,t) and 10 B(n, α).

Silicon detectors 5x5 cm², 200µm, along the beam line, to detect fission fragments emitted at forward and backward angles

Neutron data libraries overestimate the ²³⁵U(n,f) cross section

Cross section of ²³⁵U(n,f) > 10 MeV

²³⁵U(n,f) relative to (n,p) measured on 2018

Luigi Cosentino - Workshop SPES - 29/30 January 2019 - Ferrara

N_TOF towards the future: Phase 4 A new spallation target (2020 – 2030)

Increase x2 of the neutron flux above 10 keV (EAR2).

Well suitable for short-lived radioactive isotopes, in particular if available in small amounts (e.g., by implantation of radioactive beams).

Some measurements to be planned for Phase 4

(n,f) of isotopic chains to provide strong constraints for the optimization of fission models:

²³⁸Pu - ²⁴⁴Pu (some already measured)
²⁴³Cm - ²⁴⁸Cm (²⁴⁵Cm already measured)
²⁴⁹Cf - ²⁵²Cf

Review article in preparation to be published in EPJA: N.Colonna et al., *The fission experimental program at the CERN nTOF facility: status and perspectives.*

			Cf249 351 y 9/2-	Cf250 13.08 y 0+	Cf251 898 y 1/2+	Cf252 2.645 y 0+
	Cm243	3 Cm244	Cm245 8500 y	Cm246 4730 y	α Cm247 1.56E+7 v	Cm248 3.40E+5 y
	5/2+ EC,α,sf,	0+ α,sf	* 7/2+ α,sf	0+ α,sf	9/2- α	0+ α,sf
Pu238 87.7 y	Pu239 24110 y	Pu240 6563 y	Pu241 14.35 y	Pu242 3.733E+5 y		Pu244 8.08E+7 y
υ+ α,sf	α,sf	α,sf	5/2+ β·,α,sf,	α,sf		υ+ α,β·β·,sf,

Many activation measurements are difficult, since the residual has too short or too long half-life. (n,γ) activation data can be inferred from the capture cross section.

Nuclide	Half-life	Reaction	Residual	Comment
Be-10	1.51 My	(n,y)	Be-11	No data, difficult to measure
Ne-20	stable	(n,y)	Ne-21	Discrepant data
Ne-21	stable	(n,y)	Ne-22	Discrepant data
Ne-22	stable	(n,y)	Ne-23	Discrepant data
Tc-97	4.2 My	(n,y)	Tc-98	No data, difficult to measure
La-137	60 ky	(n,y)	La-138	No data, difficult to measure
Ho-163	4570 y	(n,y)	Ho-164	No data, difficult to measure
W-180	stable	(n,y)	W-181	No data, judged measurable
0s-190	stable	(n,γ)	0s-191	No data, difficult to measure
Th-230	75 ky	(n,y)	Th-231	No data, difficult to measure

Measurements of **stable and long-lived** isotopes can be done at n_TOF (EAR1 or EAR2).

Required large flux and low γ-ray background

Courtesy of N.Colonna, First joint INFN-ENEA-F4E meeting on nuclear data for fusion, March 22nd, 2016 For a complete list, see R. Forrest, Fus. Eng. and Design 81 (2006) 2143

Luigi Cosentino - Workshop SPES - 29/30 January 2019 - Ferrara

Huge list, one can select the most important isotopes, for example Tungsten, used in the divertor of DEMO

Nuclide	Abund.	Reaction	Comment
Cr-50	4.3%	(n,α)(n,p)	No/little data
Cr-52	83.8%	(n,α)	One data set only
Cr-53	9.5%	(n,α)	No data
Cr-54	2.4%	(n,α)(n,p)	Lack of data below 14 MeV
Mn-55	100%	(n,α)(n,p)	Discrepant data
Fe-56	91.7%	(n,α)	One data set only
Fe-57	2.1%	(n,α)(n,p)	Lack of data / No data for (n, α)
Zr-90	51%	(n,α)	No data
Zr-91	11%	(n,α)	No data
Zr-92	17%	(n,α)	Lack of data below 14 MeV
Nb-93	100%	(n,p)	No data
Mo-92	15%	(n,p)	No data
Mo-94	9.2%	(n,α)(n,p)	Lack of data / No data for (n, α)
Mo-95	16%	(n,α)	One data set only
Mo-96	17%	(n,α)	No data
Mo-97	9.6%	(n,α)	No data
Mo-98	24%	(n,p)	Lack of data below 14 MeV
Mo-100	9.6%	(n,p)	Lack of data below 14 MeV

Nuclide	Abund.	Reaction	Comment				
Ta-181	100%	100% $(n,\alpha)(n,p)$ Lack of data below 14 Me					
W-182	26%	(n,α)(n,p)	Lack of data / No data for (n, α)				
W-183	14%	(n,α)(n,p)	Lack of data / No data for (n,α)				
W-184	31%	(n,α)(n,p)	Lack of data below 14 MeV				
W-186	28%	(n,α)(n,p)	Lack of data below 14 MeV				

Almost all measurements to be done in EAR2, with improved detection systems (in order to reach 14 MeV).

Make use of the instantaneous high neutron flux close to the spallation target.

Luigi Cosentino - Workshop SPES - 29/30 January 2019 - Ferrara

Conclusion and perspectives

- □ At present, **n_TOF** is one of the best facilities in the world for challenging measurements requiring high flux, wide energy range, low background and good resolution.
- □ There is a need for several data on neutron-induced reactions, in particular to:
 - refine the models of s and r nucleosynthesis processes with new neutron induced reactions data (e.g. fission data for recycling in r-process)
 - neutron therapy
 - fusion reactors (ITER and DEMO)

A large number of neutron induced reactions are needed for the design of fusion reactors, in particular for problems related to the lifetime of structural materials (e.g. embrittlement due to gas production). Many of them can be performed in EAR2.

Phase 4 will starts on 2021 with the new spallation target. The planned challenging measurement will require new detectors, to extend the present energy range to 14 MeV for (n,cp) reactions. R&D activity is in progress.

Thank you for your attention

Backup slides

Some recent experiment related to the s-process

Big Bang Nucleosynthesis: *The Cosmological Lithium Problem*

0.26 E

0.25

baryon density $\Omega_{\rm b}h^2$ 10⁻²

The Big Bang Nucleosynthesis successfully predicts the abundances of primordial elements, but not for 7Li.

Some recent experiment related to the s-process

¹⁴⁰Ce(n,γ)

June 2018

Some discrepancies between AGB models and isotopic abundances might be related to the cross sections.

n_TOF in ITALY

Six INFN department involved, in collaboration with:

- ENEA-Bologna
- INAF-Teramo
- CNR-Bari

Needs related to Fusion for Energy: activation data

Many (n,cp) activation data are requested at high priority. For most **stable isotopes**, **the (n,cp) cross section** could be measured at **n_TOF (EAR2)**. Nuclide Abund. Reaction Residual Priority Comment Ne-20 90% F-20 No data, judged measurable (n,p)1 Ne-22 9.2% 0-19 No data, judged measurable (n,α) 1 Ne-22 9.2% (n,d)F-21 No data, judged measurable 1 S-34 4.2% (n,d)P-33 1 No data, judged measurable S-34 4.2% Si-31 (n,α) 1 Discrepant data Cl-37 S-37 24% (n,p)1 Discrepant data Very challenging Ni58 68% (n,t)Co-56 1, A Discrepant data Zn-67 4.1% 1, B Discrepant data (n,p)Cu-67 Ga-71 40% No data, judged measurable (n,t)Zn-69 1 Kr-78 0.3% (n,α) 1 No data, judged measurable Se-75 Zr-90 51% (n,p)Y-90g 1, B Discrepant data 22nd. 2016 Mo-92 15% (n,d)Nb-91 Discrepant data 1 Mo-94 9.2% Nb-94 1 Discrepant data (n,p)Xe-132 27% Te-129 No data, judged measurable (n,α) 1 Re-187 63% (n,t)W-185 1 No data, judged measurable Pt-195 34% (n,d)No data, judged measurable Ir-194m 1 Pb-208 52% No data, judged measurable Tl-206 1 (n,t)

Has been done Can be done

N.Colonna, First joint INFN-ENEA-F4E meeting on nuclear data for fusion, March

The **feasibility of (n,cp)** reactions in EAR2 has mostly been **demonstrated**.

Detector **R&D** required to reach 14 MeV.

Needs related to Fusion for Energy: cross section data

Measurements of (n,p) and (n,α) cross sections required for several structural elements for application to Fusion Reactors (embrittlement of structural elements).

Nuclide	Reaction	Quantity	Energy range	Field	HPRL status ¹	Comment	Has been done
Si-28	(n,np)	Cross section	Thres20 MeV	Fusion	Х		Can be done
Cr-52	(n,x d,t)	Cross section	Thres65 MeV	Fusion	G		Vory challonging
0-16	(n,α)	Cross section	2 MeV-20 MeV	Fission	Н	Planned at n_TOF	

N.Colonna, First joint INFN-ENEA-F4E meeting on nuclear data for fusion, March 22nd, 2016

The n_TOF facility at CERN

Pulsed white neutron source:

- 20 GeV/c protons
- neutrons from spallation
- · 6 ns rms pulse width
- frequency 1 pulse/2.4 seconds
- · separate cooling and moderation
- flight path length EAR1: 185 m, since 2000
- flight path length EAR2: 20 m, since 2014
- @source: 7x1012 protons/pulse
- @source: 2x10¹⁵ neutrons/pulse
- @EAR1: 5 10⁵(capture) 5 10⁷(fission) neutrons/pulse

phase II-III target 2009-present

Main features:

- Large energy range in one experiment (0.1 eV 250 MeV)
- Favorable signal to noise ratio for capture on radioactive isotopes (actinides, fission products)

Frank Gunsing

14th International Conference On Nuclear Reaction Mechanisms, June 17, 2015

13

The n_TOF Collaboration (~100 Researchers from 30 Institutes)

CERN					
Technische Universitat Wien	Austria				
IRMM EC-Joint Research Center, Gee	el Bel	gium			
IN2P3-Orsay, CEA-Saclay	France				
KIT – Karlsruhe, Goethe University, F	rankfurt Ge	rmany			
Univ. of Athens, Ioannina, Demokrite	os Greece				
INFN Bari, Bologna, Trieste, Perugia, LNL, LNS, ENEA – Bologna					
Tokyo Institute of Technology, JAEA	Japan				
ITN Lisbon	Portugal				
Charles Univ. (Prague)	Czech Republic				
Univ. of Lodz	Poland				
IFIN – Bucarest	Rumania				
INR – Dubna [*] , IPPE – Obninsk [*]	Russian F	ed.			
CIEMAT, Univ. of Valencia, Santiago University of Cataluna, Sevilla	de Compostela, Spain				
University of Basel, PSI	Switzerland				
Univ. of Manchester, Univ. of York	UK				
Australian National University Luigi Cos Notre Dame, Los Alamos, Oak Ridge	Australian sentino - Workshop SPES - J January 2019 - Ferrara	29/30			

Several sources of systematic uncertainties: sample mass, purity and homogeneity, neutron flux, detector efficiency, background ...

Neutron sensitivity is a big problem for isotopes with low capture cross section (astrophysical interest).

- low cost, technology cheaper than ³He
- low voltage (20-30 V)
- flat detector, compact, rugged, simple to use, easily handled
- fine position sensitivity (mm) easily achieved (strips)
- this sample 3cm x 3cm active area
- ≤10⁻¹¹ neutron/gamma discrimination (⁶⁰Co)

Facility	Frequency (Hz)	Path length (m)	neutron/pulse
RPI, USA	500	15 - 250	3.6·10 ⁹
GELINA, Belgium	40 - 800	5 - 400	4.3·10 ¹⁰
ORELA, Oak Ridge, USA	12 - 1000	9 - 200	1:10 ¹²
LANL, Los Alamos, USA	20	7 - 60	7.1014
n TOF CERN	0.4	20 - 185	2·10 ¹⁵

Where do s-process neutrons come from?

Free neutrons are <u>NOT</u> abundant in the major phases of nuclear burnings.

Neutrons are liberated to some extent by secondary reactions during helium burning in <u>Asymptotic Giant Branch (AGB) stars</u>, as well as during <u>core-He and</u> <u>shell-C burnings of massive stars</u>.

In the s-process, neutron capture cross sections are well determined (on average, but stay tuned!), and one the biggest remaining challenge is the supply of free neutrons over a large enough period of time.

Major neutron sources of the s-process $^{13}C(\alpha,n)^{16}O$ $^{22}Ne(\alpha,n)^{25}Mg$

Main r-process (A≥130)

NEUTRON STARS MERGERS?

Weak r-process (A≤130)

MAGNETOROTATIONALLY DRIVEN SUPENOVAE?

Main s-process (A≥90)

ASYMPTOTIC GIANT BRANCH STARS

Weak s-process (A≤90)

QUIESCENT BURNINGS OF MASSIVE STARS

E_n	$\Delta E/E$				
	EAR1	EAR2			
1 eV	3.2×10^{-4}	4.8×10^{-3}			
10 eV	3.2×10^{-4}	5.7×10^{-3}			
100 eV	4.3×10^{-4}	8.1×10^{-2}			
1 keV	5.4×10^{-4}	1.4×10^{-2}			
10 keV	1.1×10^{-3}	2.3×10^{-2}			
100 keV	2.9×10^{-3}	4.6×10^{-2}			
1 MeV	5.3×10^{-3}	5.6×10^{-2}			

The energy resolution as function of neutron energy for EAR1 with borated water as moderator [6] and EAR2 [11].

	Cm 238 2,4 h	Cm 239 3 h	Cm 240 27 d sf	Cm 241 32,8 d * * 5.335. * 472.431; 132	Cm 242 162,94 d sf a 6.113: 6.009 y(44): 6 y - 5	Cm 243 29,1 a sf n 5.785 5.742 c st; p 7.76; 228; 210	Cm 244 18,10 a	Cm 245 8500 a a 6.361;5.304 st.g y 175; 133 c 550; p. 2100	Cm 246 4730 a a 5,986; 5,343 sf; g y (45); e r 12; m 0.16	^{244, 245} Cm:1.5 Kg/yr
Am 236 ? 3,7 m	Am 237 73,0 m 51 9.042 9201;438,474; 909- 9	Am 238 1,63 h 55 953: 919: 561: 0	Am 239 11,9 h \$ \$5774 270:226 9	Am 240 50,8 h st * 55,8 h * 55,8 h	Am 241 432,2 a st σ 5,445, 643 st,γ 60,2 a σ 5,9 500, σ 2	Am 242 141 a 16 h/ st 10-01,4 b 40,7 st 7149,3 744 17149,3 744 17149,4 c 4,7 st 7149,4 c 4,7 st 7149,4 c 4,7 st 7149,4 c 4,7 st 70,0 c 7,7 st	Am 243 7370 a • 5.275; 5.233 st: y 75: 44 e 75 + 5 • 0,0074	20 m 244 20 m 10,1 h β ⁺ 0,4 γ,744; γ,1004,090; σ ⁺ -g n,1600 m,2200	Am 245 2,05 h sf (241;296) (241;296) (241;296)	²⁴¹ Am:11.6 Kg/yr ²⁴³ Am: 4.8 Kg/yr
Pu 235 25,3 m	Pu 236 2,858 a st x 5,788; 5,721 s; wg 28 y 148; 105; e ⁻ oy 160	Pu 237 45,2 d st • 5,334 • 7 50; e ⁻ • 7 2300	Pu 238 87,74 a sf # 5,492; 5,456 st; 5k Mg y (43; 102); e ⁻ e 510; ej 17	Pu 239 2,411 : 10 ⁴ a st 152 : 144 st y 152 c?m c270; cy 752	Pu 240 6563 a	Pu 241 4,35 a 51 **0,72:9 *4,880 1(143):8* * 370:*1101	Pu 242 3,750 · 10 ⁵ a a 4,901; 4,856 e'; g e'19; o ₁ < 0,2	Pu 243 4,956 h sf ^{g=0.6} 7840 ox100; or 200	Pu 244 \$,00 - 10 ⁷ a \$,4,589; 4,546 \$1,7 \$,1,7	²³⁹ Pu: 125 Kg/yr
Np 234 4,4 d «; β+ γ 1559; 1528; 1602 σ1 * 900	Np 235 396,1 d c; a 5,025; 5,007 y[26; 84]; a g; \sigma 160 + ?	Np 236 22,5 h 154 10 ⁵ (22,5 h 154 10 ⁵ (22,5 h 154 10 ⁵ (154 10 ⁵ (15	Np 237 2,144 - 10 ⁶ a e 4,790; 4, 14 7 29; 67; 9	Np 238 2,117 d β ⁻ 1,2 γ 984; 1029; 1026; 924, e ⁻ g; σ 2100	Np 239 2355 d β 0.4:17 γ 106:278 228; e ; B σ 32 + 19:στ <	Np 240 7,22 m 65 m β ⁻ 2.2 7 555, 507 6 ⁻ β ⁻ 0.9 7 566; 507 6 ⁻ 1,555, 507 6 ⁻ 87.0.9 7 566; 507 601; 448,9	Np 241 13,9 m ^{β⁻1,3} γ 175; (133) 9	Np 242 2,2 m 5,5 m 972,7 5 7786, 945; 1473 158 9 9	Np 243 1,85 m ^{β⁻} _{γ 288}	²³⁷ Np: 16 Kg/yr
U 233 1,592 · 10 ⁵ a α 4,824; 4,783 Ne 25; γ (42; 97); e ⁻ σ 47; σ 530	U 234 0,0055 2,455 · 10 ⁹ c • 4775;4722s Mo2t: Ne; 1,55; 121 of: of 96; oj < 0.005	U 235 0,7200 25 = 7,038-10 ⁸ 4 4,538810 ⁸ 4,538810 ⁸ 5,538 10 ⁸ 10 ⁸ 10 ⁸ 10 ⁸	U 236 120 vs 2 342-107 4,445 542 44 115-1 9": # 54	U 237 75 d ^(b⁻ 0,2) ^{y 60; 208} ^{e⁻} ^{a -} 100; at < 0,3	U 238 99,2745 2007 4,458-1074 h254 37,1154 37,1154 37,1154	U 239 3,5 m β ⁻ 1.2; 1,3 γ 75; 44 σ 22; σ; 15	U 240 14,1 h ^{β⁻ 0,4} γ 44: (190) e ⁻ m		U 242 16,8 m ^{β⁻} 7 68; 58; 585; 573 m	Quantities refer to yearly production in 1 GW _e LW
Pa 232 1,31 d β ⁺ 0,3,1,3; e γ 969; 894; 150; e ⁺ σ 460; e ₇ 700	Pa 233 27,0 d β 0,3:0,6 γ 312; 300; 341; e σ 20 + 19; σ < 0,1	Pa 234 1,17 m 6,70 h (5°2.3 5°0.5. 1,(1001; 1.2 1,170.00; 1.3 1,170.00; 1.3 1,170.0	Pit 235 24,2 m β ⁻ 1.4 γ 128 - 659 m	Pa 236 9,1 m β ⁼ 2,0; 3,1 γ 642; 687; 1763; g βsf ?	Pa 237 8,7 m ⁶⁷ 1,4; 2,3 9 854; 865; 529; 541	Pa 238 2,3 m β ⁻¹ ,7; 2,9 γ 1015; 635; 448; 680 9	148		150	<u>reactor</u>
Th 231 25,5 h ^{β⁻ 0,3; 0,4} ^{γ 26; 84} e ⁻	Th 232 100 1,405:10 ¹⁰ a « 4,013:3,960; sf γ (94; sf σ 7,37; sf 0,000005	Th 233 22,3 m sf ^{8^{-1,2}, y87,29; 498,-e⁻ o 1500; o₁ 15}	h 234 24,10 d β ⁻ 0,2 γ13:92:93 e m σ .8; στ < 0,01	Th 235 7,1 m β 1,4 γ 417; 727; 696	Th 236 37,5 m β ⁼ 1.0 γ 111; (647; 196)	Th 237 5,0 m				

Long-lived fission products (LLFPs): (76.2 Kg/yr)

Istituto Nazionale di Fisica Nucleare