NEWS Mid-Term REVIEW – March 4-6, 2019

NEWS Work Package 7

Advanced Superconducting Technologies for Particle Accelerators

Emanuela Barzi, Fermilab

T6.1: <u>Build and install the superconducting modules of the</u> <u>Mu2e Transport Solenoid (INFN, FNAL</u>). The modules are in construction at the ASG Superconductors in Italy under a FNAL contract, with the active collaboration and supervision of INFN personnel.

T6.2: <u>Design and build</u> a 16 T Nb₃Sn accelerator dipole (FNAL, INFN). This includes coil design studies, magnetic analysis, design of mechanical structure for the 4-layer coils, and coil stress analysis at the three stages of magnet operation.

T6.3: Optimize state-of-the-art electrochemical techniques (US patent pending) for Nb_3Sn thin layer deposition on Nb and on Cu (POLIMI, FNAL, Faraday). <u>Applications</u> include performance improvement of superconducting Nb_3Sn wires for High Field Magnets, Radio-frequency cavities, superconducting magnetic shields.

WP7 Milestone & Deliverables

<u>MS9 : Mu2e Transport Solenoid Constructed [Month No. 20 =</u> <u>February 2019]</u>

D7.1 : 16 Tesla Dipole Designed [Month No. 24 = June 2019]

Verify the design studies, magnetic analysis, mechanical structure design, coil stress analysis at the three stages of magnet operation (i.e. room temperature, after cooling down at the temperature of operation of 4 K, and at nominal magnetic field operation).

<u>D7.2 : Nb₃Sn Deposition Technique Optimized on Niobium and</u> <u>Copper [Month No. 36 = June 2020]</u>

State of the art electrochemical techniques will be optimized to achieve the best uniformity of the deposit across the surface, the best purity and improve the adhesion of the film. Samples will be experimentally characterized.

Mu2e TS Status (T6.1)

(Pasquale Fabbricatore, INFN-Genova)

The TS solenoid of Mu2e experiment is composed of 52 superconducting coils integrated into 27 modules constituting the TS serpentine.

Industrial contract for the module construction

The contract for the construction of the 27 modules, to be later assembled and integrated into the cryostat at Fermilab, was awarded by Fermilab to ASG Superconductors in Genova. The construction plan has been delayed due to some design changes and some difficult procurements of the Al-alloy mechanical structures. Most of the units will be tested in second half of 2019 and (mainly) 2020 (Secondments at Fermilab planned now for 2020).

The first unit (composed of a single module) was delivered to Fermilab and successfully tested in 2018.

The second unit (2 modules) is now at Fermilab under preparation for the cryogenic test.

Update of the TS cold mass construction

All the 52 coils of the TS have been constructed. They are integrated into the Al-alloy mechanical structures, as these latter are available.

Conductor characterization at INFN, Genova

The critical currents of cables (more than 40) from Mu2e solenoids (PS, TS and DS) were measured with a Direct Transformer Method up to 5 Tesla and 100 kAmpere.

INFN Genova has also performed studies for evaluating the impact of conductor deformation during construction (bending and twisting) on electrical transport properties.

As an example, a double twisting of the TS conductor does not cause any degradation of the critical current.

Conductor characterization at INFN, Genova (cont.)

The bending of the TS conductor could cause some limited degradation if the bending radius is too small (see hard way bending on 26 mm radius)

E. Barzi, NEWS Mid-Term REVIEW – Magnetic Field [T]

FNAL-INFN 16 T Accelerator Dipole (T6.2)

- The challenge for high field Nb₃Sn superconducting magnets is to push the <u>design limit</u> of these magnets to their superconducting potential (or <u>Short Sample limit</u>). To design and build a 16 T Nb₃Sn superconducting dipole, the design limit needs to be at least 17 T.
- Within the cos-theta magnet geometry, i.e. the same design used in the Tevatron @ Fermilab and at LHC @ CERN, a number of strain management options will be investigated.

<u>Conceptual Design and Analysis</u> of 4-layer 16 T Cos-theta Dipole Complete

1. Conceptual design studies are complete including magnetic and mechanical analysis

2. Mechanical structure developed and analyzed.

- 630 mm outer diameter for test in vertical magnet test facility at Fermilab
- Al shell, Al clamps

Stress Management Developed for 2-layer Coils

Study Stress Concentration in Coils through Sub-Modelling

Sub-Modelling at Various Detailing Levels

<u>Nb₃Sn Thin Films on Nb (T6.3)</u>

- A Nb-Sn composite is obtained by electrodeposition of Sn layers and Cu intermediate layers onto Nb substrates.
 <u>This is done at near room temperature</u> (40 and 50°C) and atmospheric pressure.
- Nb₃Sn is formed through solid diffusion by heat treating the multi-layered samples in inert atmosphere (argon) using a temperature profile with a <u>maximum temperature of 700°C</u>.

E. Barzi, NEWS Mid-Term REV¹IEW – March 4-6, 2019

Chemical Electrodeposition

Electrolytic solution

For ADHESION, THICKNESS CONTROL and UNIFORMITY, optimize:

Bath composition and anode materials for each of the three deposition steps;

- Current densities, deposition times, stirring rates, and cathode and anode relative orientation in DC mode;
- Current densities, deposition times, stirring rates, cathode and anode relative orientation, pulse frequencies, and duty cycles in pulsed mode.

The pulsed mode was eventually chosen for all three deposition

<u>Comparison of DC Test Results of</u> <u>Critical Temperature</u>

E. Barzi, NEWS Mid-Term REVIEW – March 4-6, 2019

Cylinders Coating – In progress

Summary

<u>MS9 : Mu2e Transport Solenoid Constructed [By February</u> <u>2019]:</u>

 3/27 modules tested or under test, 24 more to be tested by end of 2019.

D7.1 : 16 Tesla Dipole Designed [By June 2019]:

- Conceptual design complete, including magnetic and mechanical analyses. Mechanical structure to support coils designed.
- Sub-modelling studies with increased level of details also perormed to understand stress concentrations in coils.

<u>D7.2 : Nb₃Sn Deposition Technique Optimized on Niobium and</u> <u>Copper [by June 2020]:</u>

- The goal of optimizing the technique was already achieved at FNAL for the deposition of Nb_3Sn on Nb substrate.

- Polimi will be leading the technique for Nb_3Sn deposition on Cu substrate.