Extraction of $\Delta \alpha_{had}$ from pseudodata at LO

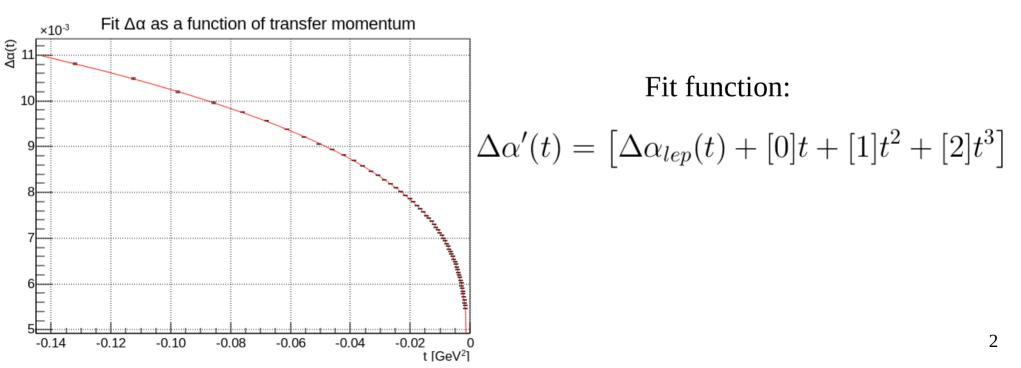
Riccardo Nunzio Pilato

In the previous study we focused directly on $\Delta \alpha$, getting the values from Fedor's routine and starting from there perform the fit:

- Get $\Delta \alpha$ as a function of t from Fedor's routine
- Introduce a statistical (uncorrelated) error on $\Delta \alpha$

$$\Delta \alpha_{i}(t_{i}) \quad \delta \Delta \alpha_{i}(t_{i}) = \frac{1}{2\sqrt{N_{i}(t_{i})}}$$

- Execute the fit on smeared data using a pol3 to model $\Delta\alpha_{_{had}}$



Definition of experimental pseudodata

$$y_i = \frac{N_i(t_i)}{N_0} \frac{\sigma^{0,MC}}{\sigma^{noVP}(t_i)} \qquad \delta y_i = y_i \sqrt{\frac{1}{N_i(t_i)} + \frac{1}{N_0}}$$

....

$$N_i(t_i) = \int_{\Delta t_i} \frac{d\sigma^{VP}}{dt} dt \cdot L$$

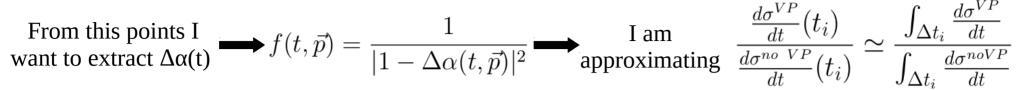
$$N_0 = \int_{\Delta t_0} \frac{d\sigma^{VP}}{dt} dt \cdot L$$

 $\Delta t_i = bin i in the signal region$ (x ϵ [0.3, 0.932]) Δt_0 = bin of the normalization region (x ϵ [0.2, 0.3]) $L = 1,5 \ 10^7 \ \text{nb}^{-1}$ Full statistics

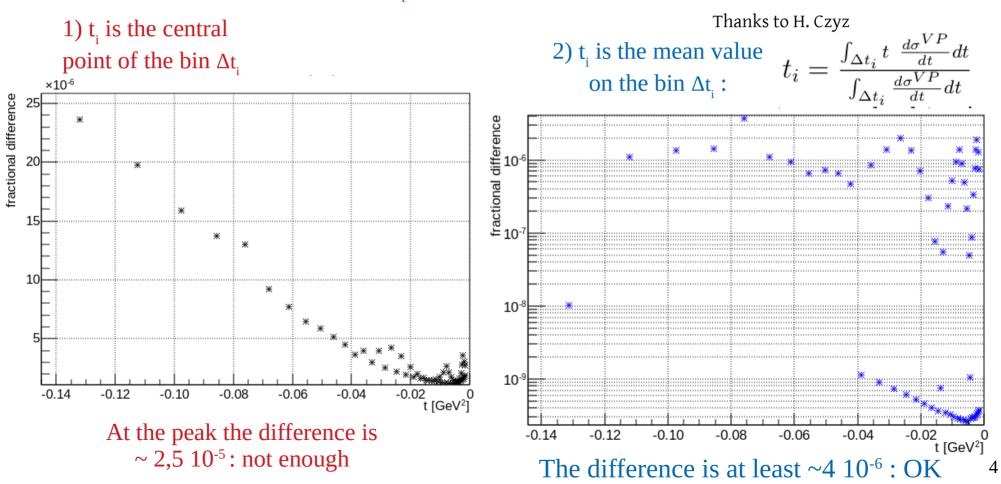
$$\sigma^{0,MC} = \int_{\Delta t_0} \frac{d\sigma^{VP}}{dt} dt \qquad \sigma^{no\ VP}(t_i) = \int_{\Delta t_i} \frac{d\sigma^{no\ VP}}{dt} dt$$

Using these definitions pseudata simplify as
$$y_i = \frac{\int \frac{d\sigma^{VP}}{dt}}{\int \frac{\Delta t_i}{\Delta t_i}}$$

Definition of experimental pseudodata



Which definition of t_i allows an agreement better than 10⁻⁵?



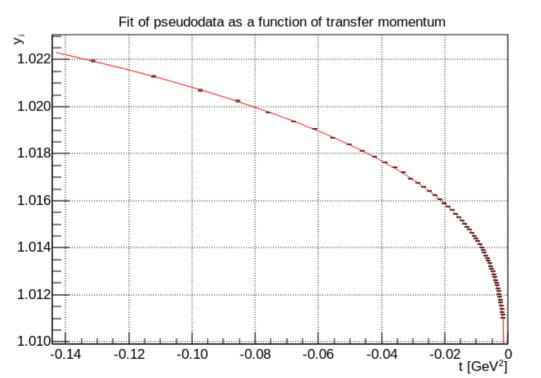
Fit procedure

• Apply a statistical smearing to pseudodata y_i

 $\Delta \alpha(t)$ and $\Delta \alpha_{lep}(t)$ known from Fedor's routine

• Extract $\Delta \alpha_{had}$ by fitting pseudodata with $f(t, \vec{p}) = \frac{1}{|1 - (\Delta \alpha_{lep}(t) + \Delta \alpha_{had}(t, \vec{p})|^2)}$

minimizing
$$\chi^2$$
: $\chi^2 = \sum_{i=0}^{N_{bin}} \left(\frac{y_i - f(t, \vec{p})}{\delta y_i} \right)^2$



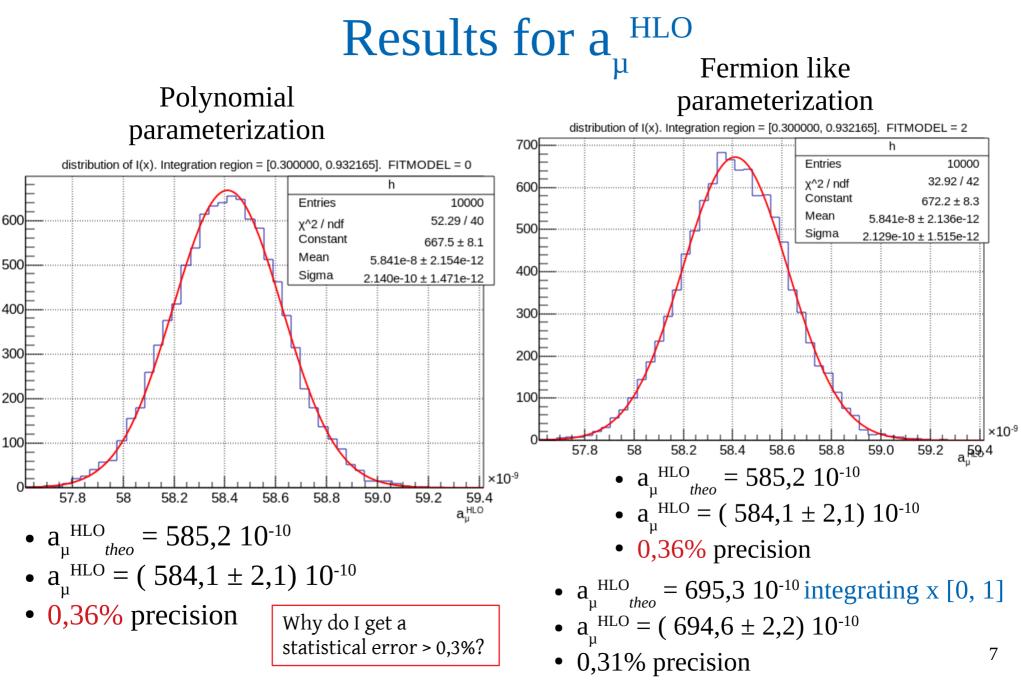
• Known $\Delta \alpha_{had}$ integrate MUonE master formula to obtain a_{μ}^{HLO}

$$a_{\mu}^{HLO} = \frac{\alpha}{\pi} \int_0^1 dx (1-x) \Delta \alpha_{had}[t(x)]$$

 a_{μ}^{μ} HLO distribution can be obtained by a 10k repetition of this fit varying y_i by Gaussian smearing (pseudodata experiment)

Which parameterization for $\Delta \alpha_{had}$?

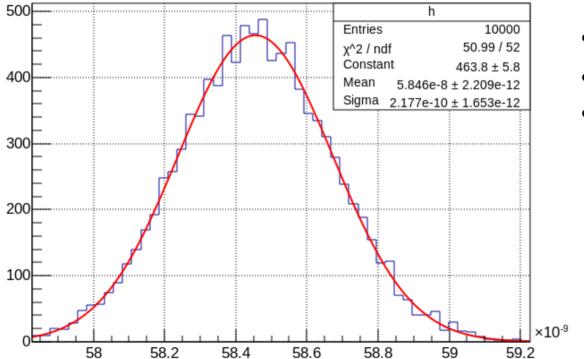




...to compare with results obtained starting from $\Delta \alpha$

Polynomial parameterization

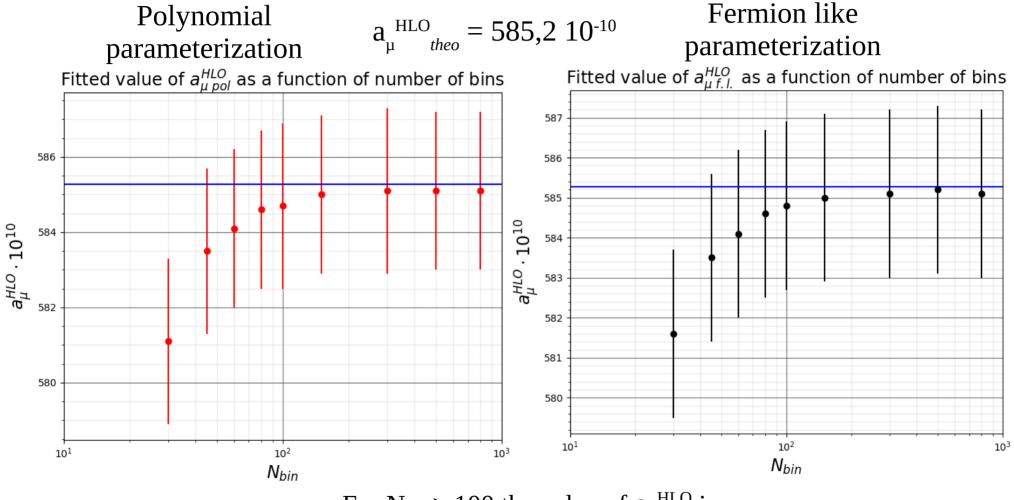
60 points



•
$$a_{\mu}^{HLO}_{theo} = 585,2\ 10^{-10}$$

•
$$a_{\mu}^{HLO} = (584, 6 \pm 2, 2) \ 10^{-10}$$

Dependence of a_{μ}^{HLO} from the number of bins



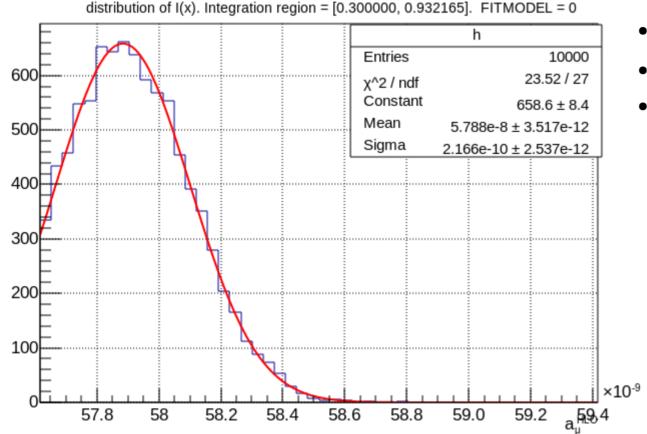
For $N_{bin} > 100$ the value of a_{μ}^{HLO} is constant: $a_{\mu}^{HLO} = (585, 1 \pm 2, 1) \ 10^{-10}$

Conclusions

- In order to have an agreement < 10⁻⁶ between differential and integrated cross sections ratio it is necessary define t_i as the mean value on th bin Δt_i weighted with the cross section.
- The full statistics available allows to get a ~0,36% precision on a_{μ}^{HLO} calculated in the signal region.
- The results obtained with two $\Delta \alpha_{had}$ parameterizations used are in agreement
- The fermion-like parameterization of $\Delta \alpha_{had}$ allows to integrate the master formula in the entire x range.
- The results obtained extracting $\Delta \alpha_{had}$ from pseudodata are consistent with the previous extraction from $\Delta \alpha$
- We will now repeat the systematic studies as done on $\Delta \alpha$
- We will move to NLO

BACKUP

Fit of a_{μ}^{HLO} using as t_i the central value on the bin



- $a_{\mu \ theo}^{HLO} = 585,3 \ 10^{-10}$
- $a_u^{HLO} = (578, 8 \pm 2, 2) 10^{-10}$
- 0,37% precision

Not consistent

