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String theory → Real world low energy physics
↪→ Compactification: R3,1 ×Minternal
Try to preserve the minimal amount of 4D supersymmetry
↪→ Usually led toMinternal = Calabi-Yau (CY)
Effective theory on it ⇒ the moduli problem...

Flux compactifications: background fluxes ⇒ a scalar
potential which stabilizes (some) of the moduli
But fluxes change the SUSY conditions
Generically,Minternal is no longer a CY
↪→ On whatMinternal to compactify ?

For type II SUGRA with fluxes, mathematical
characterization ofMinternal given in terms of Generalized
Complex Geometry (GCG):

math.DG/0209099 by N. Hitchin, math.DG/0401221 by M. Gualtieri

Minternal preserving at least N = 1 are Generalized CY
(GCY)
hep-th/0406137, hep-th/0505212 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello
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We will introduce such a relation: the twist transformation:
- relates one-forms of T6 to those of solvmanifolds.
- transform metric, dilaton, and B-field (and the RR fluxes).
↪→ relates all solutions on twisted tori to solutions on CY.

Plan:

Definitions, properties and examples of nil/solvmanifolds.
Twist transformation, GCG.

Relating via the twist transformation solutions on CY to
solutions:
- in type II on nilmanifolds, solvmanifolds,
- in heterotic string.



David
ANDRIOT

Introduction

Solvmanifolds
Properties
Examples

Twist
GCG and Twist

Relating
solutions

Conclusion

Algebra and solvmanifolds
Properties of solvable groups/algebras



David
ANDRIOT

Introduction

Solvmanifolds
Properties
Examples

Twist
GCG and Twist

Relating
solutions

Conclusion

Algebra and solvmanifolds
Properties of solvable groups/algebras
Connected and simply connected real Lie group G:



David
ANDRIOT

Introduction

Solvmanifolds
Properties
Examples

Twist
GCG and Twist

Relating
solutions

Conclusion

Algebra and solvmanifolds
Properties of solvable groups/algebras
Connected and simply connected real Lie group G: in 1− 1
with its algebra g, same for subgroups/subalgebras.



David
ANDRIOT

Introduction

Solvmanifolds
Properties
Examples

Twist
GCG and Twist

Relating
solutions

Conclusion

Algebra and solvmanifolds
Properties of solvable groups/algebras
Connected and simply connected real Lie group G: in 1− 1
with its algebra g, same for subgroups/subalgebras.
Nilpotent, solvable algebras, groups.



David
ANDRIOT

Introduction

Solvmanifolds
Properties
Examples

Twist
GCG and Twist

Relating
solutions

Conclusion

Algebra and solvmanifolds
Properties of solvable groups/algebras
Connected and simply connected real Lie group G: in 1− 1
with its algebra g, same for subgroups/subalgebras.
Nilpotent, solvable algebras, groups.

{Nilpotent} ⊂ {Solvable}



David
ANDRIOT

Introduction

Solvmanifolds
Properties
Examples

Twist
GCG and Twist

Relating
solutions

Conclusion

Algebra and solvmanifolds
Properties of solvable groups/algebras
Connected and simply connected real Lie group G: in 1− 1
with its algebra g, same for subgroups/subalgebras.
Nilpotent, solvable algebras, groups.

{Nilpotent} ⊂ {Solvable}

Ideal: [g, i] ⊂ i,



David
ANDRIOT

Introduction

Solvmanifolds
Properties
Examples

Twist
GCG and Twist

Relating
solutions

Conclusion

Algebra and solvmanifolds
Properties of solvable groups/algebras
Connected and simply connected real Lie group G: in 1− 1
with its algebra g, same for subgroups/subalgebras.
Nilpotent, solvable algebras, groups.

{Nilpotent} ⊂ {Solvable}

Ideal: [g, i] ⊂ i, nilradical n: biggest nilpotent ideal



David
ANDRIOT

Introduction

Solvmanifolds
Properties
Examples

Twist
GCG and Twist

Relating
solutions

Conclusion

Algebra and solvmanifolds
Properties of solvable groups/algebras
Connected and simply connected real Lie group G: in 1− 1
with its algebra g, same for subgroups/subalgebras.
Nilpotent, solvable algebras, groups.

{Nilpotent} ⊂ {Solvable}

Ideal: [g, i] ⊂ i, nilradical n: biggest nilpotent ideal

Nilpotent: n = g Solvable: n ⊆ g



David
ANDRIOT

Introduction

Solvmanifolds
Properties
Examples

Twist
GCG and Twist

Relating
solutions

Conclusion

Algebra and solvmanifolds
Properties of solvable groups/algebras
Connected and simply connected real Lie group G: in 1− 1
with its algebra g, same for subgroups/subalgebras.
Nilpotent, solvable algebras, groups.

{Nilpotent} ⊂ {Solvable}

Ideal: [g, i] ⊂ i, nilradical n: biggest nilpotent ideal

Nilpotent: n = g Solvable: n ⊆ g

G is a manifold with tangent space at e TG|e = g.



David
ANDRIOT

Introduction

Solvmanifolds
Properties
Examples

Twist
GCG and Twist

Relating
solutions

Conclusion

Algebra and solvmanifolds
Properties of solvable groups/algebras
Connected and simply connected real Lie group G: in 1− 1
with its algebra g, same for subgroups/subalgebras.
Nilpotent, solvable algebras, groups.

{Nilpotent} ⊂ {Solvable}

Ideal: [g, i] ⊂ i, nilradical n: biggest nilpotent ideal

Nilpotent: n = g Solvable: n ⊆ g

G is a manifold with tangent space at e TG|e = g.
dim G = dim g = 6.



David
ANDRIOT

Introduction

Solvmanifolds
Properties
Examples

Twist
GCG and Twist

Relating
solutions

Conclusion

Algebra and solvmanifolds
Properties of solvable groups/algebras
Connected and simply connected real Lie group G: in 1− 1
with its algebra g, same for subgroups/subalgebras.
Nilpotent, solvable algebras, groups.

{Nilpotent} ⊂ {Solvable}

Ideal: [g, i] ⊂ i, nilradical n: biggest nilpotent ideal

Nilpotent: n = g Solvable: n ⊆ g

G is a manifold with tangent space at e TG|e = g.
dim G = dim g = 6. Nilradical classifies algebras.



David
ANDRIOT

Introduction

Solvmanifolds
Properties
Examples

Twist
GCG and Twist

Relating
solutions

Conclusion

Algebra and solvmanifolds
Properties of solvable groups/algebras
Connected and simply connected real Lie group G: in 1− 1
with its algebra g, same for subgroups/subalgebras.
Nilpotent, solvable algebras, groups.

{Nilpotent} ⊂ {Solvable}

Ideal: [g, i] ⊂ i, nilradical n: biggest nilpotent ideal

Nilpotent: n = g Solvable: n ⊆ g

G is a manifold with tangent space at e TG|e = g.
dim G = dim g = 6. Nilradical classifies algebras.
Two cases considered here (dim n = 5, 6):



David
ANDRIOT

Introduction

Solvmanifolds
Properties
Examples

Twist
GCG and Twist

Relating
solutions

Conclusion

Algebra and solvmanifolds
Properties of solvable groups/algebras
Connected and simply connected real Lie group G: in 1− 1
with its algebra g, same for subgroups/subalgebras.
Nilpotent, solvable algebras, groups.

{Nilpotent} ⊂ {Solvable}

Ideal: [g, i] ⊂ i, nilradical n: biggest nilpotent ideal

Nilpotent: n = g Solvable: n ⊆ g

G is a manifold with tangent space at e TG|e = g.
dim G = dim g = 6. Nilradical classifies algebras.
Two cases considered here (dim n = 5, 6):
- If dim n = 6, n = g, nilpotent.



David
ANDRIOT

Introduction

Solvmanifolds
Properties
Examples

Twist
GCG and Twist

Relating
solutions

Conclusion

Algebra and solvmanifolds
Properties of solvable groups/algebras
Connected and simply connected real Lie group G: in 1− 1
with its algebra g, same for subgroups/subalgebras.
Nilpotent, solvable algebras, groups.

{Nilpotent} ⊂ {Solvable}

Ideal: [g, i] ⊂ i, nilradical n: biggest nilpotent ideal

Nilpotent: n = g Solvable: n ⊆ g

G is a manifold with tangent space at e TG|e = g.
dim G = dim g = 6. Nilradical classifies algebras.
Two cases considered here (dim n = 5, 6):
- If dim n = 6, n = g, nilpotent.
- If dim n = dim g− 1 = 5, almost nilpotent.



David
ANDRIOT

Introduction

Solvmanifolds
Properties
Examples

Twist
GCG and Twist

Relating
solutions

Conclusion

Algebra and solvmanifolds
Properties of solvable groups/algebras
Connected and simply connected real Lie group G: in 1− 1
with its algebra g, same for subgroups/subalgebras.
Nilpotent, solvable algebras, groups.

{Nilpotent} ⊂ {Solvable}

Ideal: [g, i] ⊂ i, nilradical n: biggest nilpotent ideal

Nilpotent: n = g Solvable: n ⊆ g

G is a manifold with tangent space at e TG|e = g.
dim G = dim g = 6. Nilradical classifies algebras.
Two cases considered here (dim n = 5, 6):
- If dim n = 6, n = g, nilpotent.
- If dim n = dim g− 1 = 5, almost nilpotent.

Nil/solvmanifold: compact space G/Γ, G nilpotent/solvable
and Γ a lattice in G, i.e. a discrete co-compact subgroup.



David
ANDRIOT

Introduction

Solvmanifolds
Properties
Examples

Twist
GCG and Twist

Relating
solutions

Conclusion

Algebra and solvmanifolds
Properties of solvable groups/algebras
Connected and simply connected real Lie group G: in 1− 1
with its algebra g, same for subgroups/subalgebras.
Nilpotent, solvable algebras, groups.

{Nilpotent} ⊂ {Solvable}
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Nilpotent: n = g Solvable: n ⊆ g

G is a manifold with tangent space at e TG|e = g.
dim G = dim g = 6. Nilradical classifies algebras.
Two cases considered here (dim n = 5, 6):
- If dim n = 6, n = g, nilpotent.
- If dim n = dim g− 1 = 5, almost nilpotent.

Nil/solvmanifold: compact space G/Γ, G nilpotent/solvable
and Γ a lattice in G, i.e. a discrete co-compact subgroup.

Given g, G, here: ∃ a lattice.
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∑

i<j
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Ei ∈ g: vector, f k
ĳ : structure constants,

ei ∈ g∗: dual one-form, Maurer-Cartan equation.

f k
ĳ = 0: abelian, g = R6, G ≈ (R6,+)
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ĳ ei ∧ ej = −

∑
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Ei ∈ g: vector, f k
ĳ : structure constants,

ei ∈ g∗: dual one-form, Maurer-Cartan equation.

f k
ĳ = 0: abelian, g = R6, G ≈ (R6,+), nilpotent, lattice
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[Ei ,Ej ] = f k
ĳ Ek ⇔ dek = −1

2 f k
ĳ ei ∧ ej = −

∑

i<j
f k

ĳ ei ∧ ej .

Ei ∈ g: vector, f k
ĳ : structure constants,

ei ∈ g∗: dual one-form, Maurer-Cartan equation.

f k
ĳ = 0: abelian, g = R6, G ≈ (R6,+), nilpotent, lattice

Γ ≈ Z6, G/Γ = T6.
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[Ei ,Ej ] = f k
ĳ Ek ⇔ dek = −1

2 f k
ĳ ei ∧ ej = −

∑
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f k

ĳ ei ∧ ej .

Ei ∈ g: vector, f k
ĳ : structure constants,

ei ∈ g∗: dual one-form, Maurer-Cartan equation.
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2 f k
ĳ ei ∧ ej = −

∑
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ĳ ei ∧ ej .

Ei ∈ g: vector, f k
ĳ : structure constants,

ei ∈ g∗: dual one-form, Maurer-Cartan equation.

f k
ĳ = 0: abelian, g = R6, G ≈ (R6,+), nilpotent, lattice

Γ ≈ Z6, G/Γ = T6.

[X2,X3] = X1, f 1
23 = 1: nilpotent, g = Heis3 ⊕ R3
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[Ei ,Ej ] = f k
ĳ Ek ⇔ dek = −1

2 f k
ĳ ei ∧ ej = −

∑

i<j
f k

ĳ ei ∧ ej .

Ei ∈ g: vector, f k
ĳ : structure constants,

ei ∈ g∗: dual one-form, Maurer-Cartan equation.

f k
ĳ = 0: abelian, g = R6, G ≈ (R6,+), nilpotent, lattice

Γ ≈ Z6, G/Γ = T6.

[X2,X3] = X1, f 1
23 = 1: nilpotent, g = Heis3 ⊕ R3

M = G/Γ =




S1
{1} ↪→ H/Γ1

↓
T2
{23}



×
(
T3 = R3/Z3)
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Ei ∈ g: vector, f k
ĳ : structure constants,

ei ∈ g∗: dual one-form, Maurer-Cartan equation.

f k
ĳ = 0: abelian, g = R6, G ≈ (R6,+), nilpotent, lattice

Γ ≈ Z6, G/Γ = T6.

[X2,X3] = X1, f 1
23 = 1: nilpotent, g = Heis3 ⊕ R3

M = G/Γ =




S1
{1} ↪→ H/Γ1

↓
T2
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

×
(
T3 = R3/Z3)

↪→ de1 = −e2 ∧ e3
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[Ei ,Ej ] = f k
ĳ Ek ⇔ dek = −1

2 f k
ĳ ei ∧ ej = −

∑

i<j
f k

ĳ ei ∧ ej .

Ei ∈ g: vector, f k
ĳ : structure constants,

ei ∈ g∗: dual one-form, Maurer-Cartan equation.

f k
ĳ = 0: abelian, g = R6, G ≈ (R6,+), nilpotent, lattice

Γ ≈ Z6, G/Γ = T6.

[X2,X3] = X1, f 1
23 = 1: nilpotent, g = Heis3 ⊕ R3

M = G/Γ =




S1
{1} ↪→ H/Γ1

↓
T2
{23}



×
(
T3 = R3/Z3)

↪→ de1 = −e2 ∧ e3, e1 = dx1 − x2dx3, e2 = dx2, e3 = dx3



David
ANDRIOT

Introduction

Solvmanifolds
Properties
Examples

Twist
GCG and Twist

Relating
solutions

Conclusion

Examples and geometry

[Ei ,Ej ] = f k
ĳ Ek ⇔ dek = −1

2 f k
ĳ ei ∧ ej = −

∑

i<j
f k

ĳ ei ∧ ej .

Ei ∈ g: vector, f k
ĳ : structure constants,

ei ∈ g∗: dual one-form, Maurer-Cartan equation.

f k
ĳ = 0: abelian, g = R6, G ≈ (R6,+), nilpotent, lattice

Γ ≈ Z6, G/Γ = T6.

[X2,X3] = X1, f 1
23 = 1: nilpotent, g = Heis3 ⊕ R3

M = G/Γ =




S1
{1} ↪→ H/Γ1

↓
T2
{23}



×
(
T3 = R3/Z3)

↪→ de1 = −e2 ∧ e3, e1 = dx1 − x2dx3, e2 = dx2, e3 = dx3

Nilpotent cases: nilmanifold = iterated fibrations of tori.
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N/ΓN ↪→ M = G/Γ
↓

S1 = G/(NΓ)
G is almost nilpotent... Fibration encoded in µ(t).
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Then g− n = R = {∂t}, G/N ≈ R = {et∂t}, R/Z = S1.
Mostow “bundle”:

N/ΓN ↪→ M = G/Γ
↓

S1 = G/(NΓ)
G is almost nilpotent... Fibration encoded in µ(t).
N/ΓN is a nilmanifold...

Further particular case: N = RdimG−1, almost abelian.
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Non-nil solvmanifolds? Particular case: dim n = dim g− 1.
Then g− n = R = {∂t}, G/N ≈ R = {et∂t}, R/Z = S1.
Mostow “bundle”:

TdimG−1 = N/ΓN ↪→ M = G/Γ
↓

S1 = G/(NΓ)
G is almost nilpotent... Fibration encoded in µ(t).
N/ΓN is a nilmanifold...

Further particular case: N = RdimG−1, almost abelian.
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Then g− n = R = {∂t}, G/N ≈ R = {et∂t}, R/Z = S1.
Mostow “bundle”:

TdimG−1 = N/ΓN ↪→ M = G/Γ
↓

S1 = G/(NΓ)
G is almost nilpotent... Fibration encoded in µ(t).
N/ΓN is a nilmanifold...

Further particular case: N = RdimG−1, almost abelian.
µ(t) = Adet∂t (n) = et ad∂t (n).
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Non-nil solvmanifolds? Particular case: dim n = dim g− 1.
Then g− n = R = {∂t}, G/N ≈ R = {et∂t}, R/Z = S1.
Mostow “bundle”:

TdimG−1 = N/ΓN ↪→ M = G/Γ
↓

S1 = G/(NΓ)
G is almost nilpotent... Fibration encoded in µ(t).
N/ΓN is a nilmanifold...

Further particular case: N = RdimG−1, almost abelian.
µ(t) = Adet∂t (n) = et ad∂t (n).
Three-dimensional almost abelian examples:

E2 (g0
3.5) E1,1 (g−1

3.4)

µ(t) =
(

cos(t) − sin(t)
sin(t) cos(t)

)
µ(t) =

(
cosh(t) − sinh(t)
− sinh(t) cosh(t)

)
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Then g− n = R = {∂t}, G/N ≈ R = {et∂t}, R/Z = S1.
Mostow “bundle”:

TdimG−1 = N/ΓN ↪→ M = G/Γ
↓

S1 = G/(NΓ)
G is almost nilpotent... Fibration encoded in µ(t).
N/ΓN is a nilmanifold...

Further particular case: N = RdimG−1, almost abelian.
µ(t) = Adet∂t (n) = et ad∂t (n).
Three-dimensional almost abelian examples:

E2 (g0
3.5) E1,1 (g−1

3.4)

µ(t) =
(

cos(t) − sin(t)
sin(t) cos(t)
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Non-nil solvmanifolds? Particular case: dim n = dim g− 1.
Then g− n = R = {∂t}, G/N ≈ R = {et∂t}, R/Z = S1.
Mostow “bundle”:

TdimG−1 = N/ΓN ↪→ M = G/Γ
↓

S1 = G/(NΓ)
G is almost nilpotent... Fibration encoded in µ(t).
N/ΓN is a nilmanifold...

Further particular case: N = RdimG−1, almost abelian.
µ(t) = Adet∂t (n) = et ad∂t (n).
Three-dimensional almost abelian examples:

E2 (g0
3.5) E1,1 (g−1

3.4)

µ(t) =
(

cos(t) − sin(t)
sin(t) cos(t)

)
µ(t) =

(
cosh(t) − sinh(t)
− sinh(t) cosh(t)

)

µ(t1) µ(t2)

tAlmost nilpotent...
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...
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The ei have to satisfy the Maurer-Cartan equation.
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Idea: obtain one-forms for the solvmanifold out of those of T6:
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


dx1

...
dx6



 =




e1

...
e6



 .

The ei have to satisfy the Maurer-Cartan equation.
Given the Mostow bundle





Fp ↪→ Mp
↓
.
.
.
↓

F1 ↪→ M1
↓
B1





= N/ΓN ↪→ M = G/Γ
↓

T k
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Idea: obtain one-forms for the solvmanifold out of those of T6:

A




dx1

...
dx6



 =




e1

...
e6



 .

The ei have to satisfy the Maurer-Cartan equation.
Given the Mostow bundle, we take


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Fp ↪→ Mp
↓
.
.
.
↓

F1 ↪→ M1
↓
B1





= N/ΓN ↪→ M = G/Γ
↓

T k

A =
(

AN 0
0 1k

)(
AM 0
0 1k

)
, AN = Ap . . .A1 .
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Twist transformation
Idea: obtain one-forms for the solvmanifold out of those of T6:

A




dx1

...
dx6



 =




e1

...
e6



 .

The ei have to satisfy the Maurer-Cartan equation.
Given the Mostow bundle, we take
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Fp ↪→ Mp
↓
.
.
.
↓

F1 ↪→ M1
↓
B1


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= N/ΓN ↪→ M = G/Γ
↓

T k

A =
(

AN 0
0 1k

)(
AM 0
0 1k

)
, AN = Ap . . .A1 .

AM = µ(−t) = e−t ad∂t , dei = d(e−t ad∂t )i
k ∧ dxk = · · · = −f i

tj dt ∧ ej .



David
ANDRIOT

Introduction

Solvmanifolds
Properties
Examples

Twist
GCG and Twist

Relating
solutions

Conclusion
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...
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 =
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...
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AN , Ai : similar formula
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Twist transformation
Idea: obtain one-forms for the solvmanifold out of those of T6:

A




dx1

...
dx6



 =




e1

...
e6



 .

The ei have to satisfy the Maurer-Cartan equation.
Given the Mostow bundle, we take





Fp ↪→ Mp
↓
.
.
.
↓

F1 ↪→ M1
↓
B1





= N/ΓN ↪→ M = G/Γ
↓

T k

A =
(

AN 0
0 1k

)(
AM 0
0 1k

)
, AN = Ap . . .A1 .

AM = µ(−t) = e−t ad∂t , dei = d(e−t ad∂t )i
k ∧ dxk = · · · = −f i

tj dt ∧ ej .

AN , Ai : similar formula, Ai =
(

1 0
Ai(xBi ) 1

)
.
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GCG encodes in a geometric picture the NSNS sector of type II
SUGRA.



David
ANDRIOT

Introduction

Solvmanifolds
Properties
Examples

Twist
GCG and Twist

Relating
solutions

Conclusion

Generalized Complex Geometry and the twist

GCG encodes in a geometric picture the NSNS sector of type II
SUGRA.
The RR fluxes can be obtained out of SUSY equations.



David
ANDRIOT

Introduction

Solvmanifolds
Properties
Examples

Twist
GCG and Twist

Relating
solutions

Conclusion

Generalized Complex Geometry and the twist

GCG encodes in a geometric picture the NSNS sector of type II
SUGRA.
The RR fluxes can be obtained out of SUSY equations.
The twist transformation can be extended in this geometric
picture



David
ANDRIOT

Introduction

Solvmanifolds
Properties
Examples

Twist
GCG and Twist

Relating
solutions

Conclusion

Generalized Complex Geometry and the twist

GCG encodes in a geometric picture the NSNS sector of type II
SUGRA.
The RR fluxes can be obtained out of SUSY equations.
The twist transformation can be extended in this geometric
picture
↪→ include transformation on B, g and φ.



David
ANDRIOT

Introduction

Solvmanifolds
Properties
Examples

Twist
GCG and Twist

Relating
solutions

Conclusion

Generalized Complex Geometry and the twist

GCG encodes in a geometric picture the NSNS sector of type II
SUGRA.
The RR fluxes can be obtained out of SUSY equations.
The twist transformation can be extended in this geometric
picture
↪→ include transformation on B, g and φ.
↪→ transformation of RR fluxes.



David
ANDRIOT

Introduction

Solvmanifolds
Properties
Examples

Twist
GCG and Twist

Relating
solutions

Conclusion

Generalized Complex Geometry and the twist

GCG encodes in a geometric picture the NSNS sector of type II
SUGRA.
The RR fluxes can be obtained out of SUSY equations.
The twist transformation can be extended in this geometric
picture
↪→ include transformation on B, g and φ.
↪→ transformation of RR fluxes.

Two solutions can be related...



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating solutions
• Examples in type IIB on nilmanifolds

Minternal T6 = T2 × T4



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating solutions
• Examples in type IIB on nilmanifolds

Minternal T6 = T2 × T4

ds2
6 e−2Adx2

B + e−2A|dz|2



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating solutions
• Examples in type IIB on nilmanifolds

Minternal T6 = T2 × T4

ds2
6 e−2Adx2

B + e−2A|dz|2

Sources, θ O3 , θ = π
2



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating solutions
• Examples in type IIB on nilmanifolds

Minternal T6 = T2 × T4

ds2
6 e−2Adx2

B + e−2A|dz|2

Sources, θ O3 , θ = π
2

RR gsF5 = e4A ∗ d(e−4A) , (F3)



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating solutions
• Examples in type IIB on nilmanifolds

Minternal T6 = T2 × T4

ds2
6 e−2Adx2

B + e−2A|dz|2

Sources, θ O3 , θ = π
2

RR gsF5 = e4A ∗ d(e−4A) , (F3)
NSNS (H = gs ∗ F3)



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating solutions
• Examples in type IIB on nilmanifolds

Minternal T6 = T2 × T4

ds2
6 e−2Adx2

B + e−2A|dz|2

Sources, θ O3 , θ = π
2

RR gsF5 = e4A ∗ d(e−4A) , (F3)
NSNS (H = gs ∗ F3)

eφ gs



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating solutions
• Examples in type IIB on nilmanifolds

T2 ↪→ M
Minternal T6 = T2 × T4 ↓

T4

ds2
6 e−2Adx2

B + e−2A|dz|2

Sources, θ O3 , θ = π
2

RR gsF5 = e4A ∗ d(e−4A) , (F3)
NSNS (H = gs ∗ F3)

eφ gs



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating solutions
• Examples in type IIB on nilmanifolds

T2 ↪→ M
Minternal T6 = T2 × T4 ↓

T4

ds2
6 e−2Adx2

B + e−2A|dz|2 e−2Adx2
B + e2A|dz + α|2

Sources, θ O3 , θ = π
2

RR gsF5 = e4A ∗ d(e−4A) , (F3)
NSNS (H = gs ∗ F3)

eφ gs



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating solutions
• Examples in type IIB on nilmanifolds

T2 ↪→ M
Minternal T6 = T2 × T4 ↓

T4

ds2
6 e−2Adx2

B + e−2A|dz|2 e−2Adx2
B + e2A|dz + α|2

Sources, θ O3 , θ = π
2 O5 // F , θ = 0

RR gsF5 = e4A ∗ d(e−4A) , (F3)
NSNS (H = gs ∗ F3)

eφ gs



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating solutions
• Examples in type IIB on nilmanifolds

T2 ↪→ M
Minternal T6 = T2 × T4 ↓

T4

ds2
6 e−2Adx2

B + e−2A|dz|2 e−2Adx2
B + e2A|dz + α|2

Sources, θ O3 , θ = π
2 O5 // F , θ = 0

RR gsF5 = e4A ∗ d(e−4A) , (F3) gsF3 = −e−4A ∗ d(e2AJ)
NSNS (H = gs ∗ F3)

eφ gs



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating solutions
• Examples in type IIB on nilmanifolds

T2 ↪→ M
Minternal T6 = T2 × T4 ↓

T4

ds2
6 e−2Adx2

B + e−2A|dz|2 e−2Adx2
B + e2A|dz + α|2

Sources, θ O3 , θ = π
2 O5 // F , θ = 0

RR gsF5 = e4A ∗ d(e−4A) , (F3) gsF3 = −e−4A ∗ d(e2AJ)
NSNS (H = gs ∗ F3) 0

eφ gs



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating solutions
• Examples in type IIB on nilmanifolds

T2 ↪→ M
Minternal T6 = T2 × T4 ↓

T4

ds2
6 e−2Adx2

B + e−2A|dz|2 e−2Adx2
B + e2A|dz + α|2

Sources, θ O3 , θ = π
2 O5 // F , θ = 0

RR gsF5 = e4A ∗ d(e−4A) , (F3) gsF3 = −e−4A ∗ d(e2AJ)
NSNS (H = gs ∗ F3) 0

eφ gs gse2A



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating solutions
• Examples in type IIB on nilmanifolds

T2 ↪→ M
Minternal T6 = T2 × T4 ↓

T4

ds2
6 e−2Adx2

B + e−2A|dz|2 e−2Adx2
B + e2A|dz + α|2

Sources, θ O3 , θ = π
2 O5 // F , θ = 0

RR gsF5 = e4A ∗ d(e−4A) , (F3) gsF3 = −e−4A ∗ d(e2AJ)
NSNS (H = gs ∗ F3) 0

eφ gs gse2A

Twist transformation?



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating solutions
• Examples in type IIB on nilmanifolds

T2 ↪→ M
Minternal T6 = T2 × T4 ↓

T4

ds2
6 e−2Adx2

B + e−2A|dz|2 e−2Adx2
B + e2A|dz + α|2

Sources, θ O3 , θ = π
2 O5 // F , θ = 0

RR gsF5 = e4A ∗ d(e−4A) , (F3) gsF3 = −e−4A ∗ d(e2AJ)
NSNS (H = gs ∗ F3) 0

eφ gs gse2A

Twist transformation?
Possible metric transformation, not for B



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating solutions
• Examples in type IIB on nilmanifolds

T2 ↪→ M
Minternal T6 = T2 × T4 ↓

T4

ds2
6 e−2Adx2

B + e−2A|dz|2 e−2Adx2
B + e2A|dz + α|2

Sources, θ O3 , θ = π
2 O5 // F , θ = 0

RR gsF5 = e4A ∗ d(e−4A) , (F3) gsF3 = −e−4A ∗ d(e2AJ)
NSNS (H = gs ∗ F3) 0

eφ gs gse2A

Twist transformation?
Possible metric transformation, not for B, but on F .



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating solutions
• Examples in type IIB on nilmanifolds

T2 ↪→ M
Minternal T6 = T2 × T4 ↓

T4

ds2
6 e−2Adx2

B + e−2A|dz|2 e−2Adx2
B + e2A|dz + α|2

Sources, θ O3 , θ = π
2 O5 // F , θ = 0

RR gsF5 = e4A ∗ d(e−4A) , (F3) gsF3 = −e−4A ∗ d(e2AJ)
NSNS (H = gs ∗ F3) 0

eφ gs gse2A

Twist transformation?
Possible metric transformation, not for B, but on F .
Provide a connection α



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating solutions
• Examples in type IIB on nilmanifolds

T2 ↪→ M
Minternal T6 = T2 × T4 ↓

T4

ds2
6 e−2Adx2

B + e−2A|dz|2 e−2Adx2
B + e2A|dz + α|2

Sources, θ O3 , θ = π
2 O5 // F , θ = 0

RR gsF5 = e4A ∗ d(e−4A) , (F3) gsF3 = −e−4A ∗ d(e2AJ)
NSNS (H = gs ∗ F3) 0

eφ gs gse2A

Twist transformation?
Possible metric transformation, not for B, but on F .
Provide a connection α, θ+c = −π2 .



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating solutions
• Examples in type IIB on nilmanifolds

T2 ↪→ M
Minternal T6 = T2 × T4 ↓

T4

ds2
6 e−2Adx2

B + e−2A|dz|2 e−2Adx2
B + e2A|dz + α|2

Sources, θ O3 , θ = π
2 O5 // F , θ = 0

RR gsF5 = e4A ∗ d(e−4A) , (F3) gsF3 = −e−4A ∗ d(e2AJ)
NSNS (H = gs ∗ F3) 0

eφ gs gse2A

Twist transformation?
Possible metric transformation, not for B, but on F .
Provide a connection α, θ+c = −π2 . B-transform if needed...



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating solutions
• Examples in type IIB on nilmanifolds

T2 ↪→ M
Minternal T6 = T2 × T4 ↓

T4

ds2
6 e−2Adx2

B + e−2A|dz|2 e−2Adx2
B + e2A|dz + α|2

Sources, θ O3 , θ = π
2 O5 // F , θ = 0

RR gsF5 = e4A ∗ d(e−4A) , (F3) gsF3 = −e−4A ∗ d(e2AJ)
NSNS (H = gs ∗ F3) 0

eφ gs gse2A

Twist transformation?
Possible metric transformation, not for B, but on F .
Provide a connection α, θ+c = −π2 . B-transform if needed...
↪→ Twist related !



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating solutions
• Examples in type IIB on nilmanifolds

T2 ↪→ M
Minternal T6 = T2 × T4 ↓

T4

ds2
6 e−2Adx2

B + e−2A|dz|2 e−2Adx2
B + e2A|dz + α|2

Sources, θ O3 , θ = π
2 O5 // F , θ = 0

RR gsF5 = e4A ∗ d(e−4A) , (F3) gsF3 = −e−4A ∗ d(e2AJ)
NSNS (H = gs ∗ F3) 0

eφ gs gse2A

Twist transformation?
Possible metric transformation, not for B, but on F .
Provide a connection α, θ+c = −π2 . B-transform if needed...
↪→ Twist related !
T-duals only for very specific H .= 0.



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating solutions
• Examples in type IIB on nilmanifolds

T2 ↪→ M
Minternal T6 = T2 × T4 ↓

T4

ds2
6 e−2Adx2

B + e−2A|dz|2 e−2Adx2
B + e2A|dz + α|2

Sources, θ O3 , θ = π
2 O5 // F , θ = 0

RR gsF5 = e4A ∗ d(e−4A) , (F3) gsF3 = −e−4A ∗ d(e2AJ)
NSNS (H = gs ∗ F3) 0

eφ gs gse2A

Twist transformation?
Possible metric transformation, not for B, but on F .
Provide a connection α, θ+c = −π2 . B-transform if needed...
↪→ Twist related !
T-duals only for very specific H .= 0.

Explicit non-trivial fibration solutions?



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating solutions
• Examples in type IIB on nilmanifolds

T2 ↪→ M
Minternal T6 = T2 × T4 ↓

T4

ds2
6 e−2Adx2

B + e−2A|dz|2 e−2Adx2
B + e2A|dz + α|2

Sources, θ O3 , θ = π
2 O5 // F , θ = 0

RR gsF5 = e4A ∗ d(e−4A) , (F3) gsF3 = −e−4A ∗ d(e2AJ)
NSNS (H = gs ∗ F3) 0

eφ gs gse2A

Twist transformation?
Possible metric transformation, not for B, but on F .
Provide a connection α, θ+c = −π2 . B-transform if needed...
↪→ Twist related !
T-duals only for very specific H .= 0.

Explicit non-trivial fibration solutions?⇒ among nilmanifolds .
hep-th/0609124 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating solutions
• Examples in type IIB on nilmanifolds

T2 ↪→ M
Minternal T6 = T2 × T4 ↓

T4

ds2
6 e−2Adx2

B + e−2A|dz|2 e−2Adx2
B + e2A|dz + α|2

Sources, θ O3 , θ = π
2 O5 // F , θ = 0

RR gsF5 = e4A ∗ d(e−4A) , (F3) gsF3 = −e−4A ∗ d(e2AJ)
NSNS (H = gs ∗ F3) 0

eφ gs gse2A

Twist transformation?
Possible metric transformation, not for B, but on F .
Provide a connection α, θ+c = −π2 . B-transform if needed...
↪→ Twist related !
T-duals only for very specific H .= 0.

Explicit non-trivial fibration solutions?⇒ among nilmanifolds .
hep-th/0609124 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

Another solution on S1 ↪→M→ (T2 ↪→M1 → T3).



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating solutions
• Examples in type IIB on nilmanifolds

T2 ↪→ M
Minternal T6 = T2 × T4 ↓

T4

ds2
6 e−2Adx2

B + e−2A|dz|2 e−2Adx2
B + e2A|dz + α|2

Sources, θ O3 , θ = π
2 O5 // F , θ = 0

RR gsF5 = e4A ∗ d(e−4A) , (F3) gsF3 = −e−4A ∗ d(e2AJ)
NSNS (H = gs ∗ F3) 0

eφ gs gse2A

Twist transformation?
Possible metric transformation, not for B, but on F .
Provide a connection α, θ+c = −π2 . B-transform if needed...
↪→ Twist related !
T-duals only for very specific H .= 0.

Explicit non-trivial fibration solutions?⇒ among nilmanifolds .
hep-th/0609124 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

Another solution on S1 ↪→M→ (T2 ↪→M1 → T3).
Obtained by a twist from (T2 ↪→M1 → T3)× S1 !



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating solutions
• Examples in type IIB on nilmanifolds

T2 ↪→ M
Minternal T6 = T2 × T4 ↓

T4

ds2
6 e−2Adx2

B + e−2A|dz|2 e−2Adx2
B + e2A|dz + α|2

Sources, θ O3 , θ = π
2 O5 // F , θ = 0

RR gsF5 = e4A ∗ d(e−4A) , (F3) gsF3 = −e−4A ∗ d(e2AJ)
NSNS (H = gs ∗ F3) 0

eφ gs gse2A

Twist transformation?
Possible metric transformation, not for B, but on F .
Provide a connection α, θ+c = −π2 . B-transform if needed...
↪→ Twist related !
T-duals only for very specific H .= 0.

Explicit non-trivial fibration solutions?⇒ among nilmanifolds .
hep-th/0609124 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

Another solution on S1 ↪→M→ (T2 ↪→M1 → T3).
Obtained by a twist from (T2 ↪→M1 → T3)× S1 !
Iterated fibration.



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating solutions
• Examples in type IIB on nilmanifolds

T2 ↪→ M
Minternal T6 = T2 × T4 ↓

T4

ds2
6 e−2Adx2

B + e−2A|dz|2 e−2Adx2
B + e2A|dz + α|2

Sources, θ O3 , θ = π
2 O5 // F , θ = 0

RR gsF5 = e4A ∗ d(e−4A) , (F3) gsF3 = −e−4A ∗ d(e2AJ)
NSNS (H = gs ∗ F3) 0

eφ gs gse2A

Twist transformation?
Possible metric transformation, not for B, but on F .
Provide a connection α, θ+c = −π2 . B-transform if needed...
↪→ Twist related !
T-duals only for very specific H .= 0.

Explicit non-trivial fibration solutions?⇒ among nilmanifolds .
hep-th/0609124 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

Another solution on S1 ↪→M→ (T2 ↪→M1 → T3).
Obtained by a twist from (T2 ↪→M1 → T3)× S1 !
Iterated fibration. No T6 T-dual.



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

• Examples on solvmanifolds

Solutions on two six-dim. almost abelian solvmanifolds:



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

• Examples on solvmanifolds

Solutions on two six-dim. almost abelian solvmanifolds:
hep-th/0506066 by P.G. Cámara, A. Font, L.E. Ibáñez

hep-th/0609124 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

0804.1769 by D.A.



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

• Examples on solvmanifolds

Solutions on two six-dim. almost abelian solvmanifolds:
hep-th/0506066 by P.G. Cámara, A. Font, L.E. Ibáñez

hep-th/0609124 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

0804.1769 by D.A.

T2 × T2 ↪→ M1
↓ × S1

S1



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

• Examples on solvmanifolds

Solutions on two six-dim. almost abelian solvmanifolds:
hep-th/0506066 by P.G. Cámara, A. Font, L.E. Ibáñez

hep-th/0609124 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

0804.1769 by D.A.

T2 × T2 ↪→ M1
↓ × S1

S1

s 2.5 (g0,0,±1
5.17 ⊕ R) g1,−1,−1

5.7 ⊕ R



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

• Examples on solvmanifolds

Solutions on two six-dim. almost abelian solvmanifolds:
hep-th/0506066 by P.G. Cámara, A. Font, L.E. Ibáñez

hep-th/0609124 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

0804.1769 by D.A.

T2 × T2 ↪→ M1
↓ × S1

S1

s 2.5 (g0,0,±1
5.17 ⊕ R) g1,−1,−1

5.7 ⊕ R

A =

(
R

R
12

)



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

• Examples on solvmanifolds

Solutions on two six-dim. almost abelian solvmanifolds:
hep-th/0506066 by P.G. Cámara, A. Font, L.E. Ibáñez

hep-th/0609124 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

0804.1769 by D.A.

T2 × T2 ↪→ M1
↓ × S1

S1

s 2.5 (g0,0,±1
5.17 ⊕ R) g1,−1,−1

5.7 ⊕ R

A =

(
R

R
12

)

R =
( cos(x5) − sin(x5)

sin(x5) cos(x5)

)



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

• Examples on solvmanifolds

Solutions on two six-dim. almost abelian solvmanifolds:
hep-th/0506066 by P.G. Cámara, A. Font, L.E. Ibáñez

hep-th/0609124 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

0804.1769 by D.A.

T2 × T2 ↪→ M1
↓ × S1

S1

s 2.5 (g0,0,±1
5.17 ⊕ R) g1,−1,−1

5.7 ⊕ R

A =

(
R

R
12

)
A =

(
Rh

Rh
12

)

R =
( cos(x5) − sin(x5)

sin(x5) cos(x5)

)



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

• Examples on solvmanifolds

Solutions on two six-dim. almost abelian solvmanifolds:
hep-th/0506066 by P.G. Cámara, A. Font, L.E. Ibáñez

hep-th/0609124 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

0804.1769 by D.A.

T2 × T2 ↪→ M1
↓ × S1

S1

s 2.5 (g0,0,±1
5.17 ⊕ R) g1,−1,−1

5.7 ⊕ R

A =

(
R

R
12

)
A =

(
Rh

Rh
12

)

R =
( cos(x5) − sin(x5)

sin(x5) cos(x5)

)
Rh =
( cosh(x5) − sinh(x5)
− sinh(x5) cosh(x5)

)



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

• Examples on solvmanifolds

Solutions on two six-dim. almost abelian solvmanifolds:
hep-th/0506066 by P.G. Cámara, A. Font, L.E. Ibáñez

hep-th/0609124 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

0804.1769 by D.A.

T2 × T2 ↪→ M1
↓ × S1

S1

s 2.5 (g0,0,±1
5.17 ⊕ R) g1,−1,−1

5.7 ⊕ R

A =

(
R

R
12

)
A =

(
Rh

Rh
12

)

R =
( cos(x5) − sin(x5)

sin(x5) cos(x5)

)
Rh =
( cosh(x5) − sinh(x5)
− sinh(x5) cosh(x5)

)

IIA, IIB



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

• Examples on solvmanifolds

Solutions on two six-dim. almost abelian solvmanifolds:
hep-th/0506066 by P.G. Cámara, A. Font, L.E. Ibáñez

hep-th/0609124 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

0804.1769 by D.A.

T2 × T2 ↪→ M1
↓ × S1

S1

s 2.5 (g0,0,±1
5.17 ⊕ R) g1,−1,−1

5.7 ⊕ R

A =

(
R

R
12

)
A =

(
Rh

Rh
12

)

R =
( cos(x5) − sin(x5)

sin(x5) cos(x5)

)
Rh =
( cosh(x5) − sinh(x5)
− sinh(x5) cosh(x5)

)

IIA, IIB
O5/6, D5/6



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

• Examples on solvmanifolds

Solutions on two six-dim. almost abelian solvmanifolds:
hep-th/0506066 by P.G. Cámara, A. Font, L.E. Ibáñez

hep-th/0609124 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

0804.1769 by D.A.

T2 × T2 ↪→ M1
↓ × S1

S1

s 2.5 (g0,0,±1
5.17 ⊕ R) g1,−1,−1

5.7 ⊕ R

A =

(
R

R
12

)
A =

(
Rh

Rh
12

)

R =
( cos(x5) − sin(x5)

sin(x5) cos(x5)

)
Rh =
( cosh(x5) − sinh(x5)
− sinh(x5) cosh(x5)

)

IIA, IIB IIA
O5/6, D5/6



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

• Examples on solvmanifolds

Solutions on two six-dim. almost abelian solvmanifolds:
hep-th/0506066 by P.G. Cámara, A. Font, L.E. Ibáñez

hep-th/0609124 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

0804.1769 by D.A.

T2 × T2 ↪→ M1
↓ × S1

S1

s 2.5 (g0,0,±1
5.17 ⊕ R) g1,−1,−1

5.7 ⊕ R

A =

(
R

R
12

)
A =

(
Rh

Rh
12

)

R =
( cos(x5) − sin(x5)

sin(x5) cos(x5)

)
Rh =
( cosh(x5) − sinh(x5)
− sinh(x5) cosh(x5)

)

IIA, IIB IIA
O5/6, D5/6 2 O6



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

• Examples on solvmanifolds

Solutions on two six-dim. almost abelian solvmanifolds:
hep-th/0506066 by P.G. Cámara, A. Font, L.E. Ibáñez

hep-th/0609124 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

0804.1769 by D.A.

T2 × T2 ↪→ M1
↓ × S1

S1

s 2.5 (g0,0,±1
5.17 ⊕ R) g1,−1,−1

5.7 ⊕ R

A =

(
R

R
12

)
A =

(
Rh

Rh
12

)

R =
( cos(x5) − sin(x5)

sin(x5) cos(x5)

)
Rh =
( cosh(x5) − sinh(x5)
− sinh(x5) cosh(x5)

)

IIA, IIB IIA
O5/6, D5/6 2 O6

Solutions not T-dual to T6.



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

• Examples on solvmanifolds

Solutions on two six-dim. almost abelian solvmanifolds:
hep-th/0506066 by P.G. Cámara, A. Font, L.E. Ibáñez

hep-th/0609124 by M. Graña, R. Minasian, M. Petrini, A. Tomasiello

0804.1769 by D.A.

T2 × T2 ↪→ M1
↓ × S1

S1

s 2.5 (g0,0,±1
5.17 ⊕ R) g1,−1,−1

5.7 ⊕ R

A =

(
R

R
12

)
A =

(
Rh

Rh
12

)

R =
( cos(x5) − sin(x5)

sin(x5) cos(x5)

)
Rh =
( cosh(x5) − sinh(x5)
− sinh(x5) cosh(x5)

)

IIA, IIB IIA
O5/6, D5/6 2 O6

Solutions not T-dual to T6.
First IIB solution related to T6 by the twist transformation.



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating two heterotic flux backgrounds



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating two heterotic flux backgrounds
SUSY conditions in the presence of H .= 0 and Bianchi id.:

Nucl. Phys. B 274 (1986) 253 by A. Strominger

Cambridge Print 86-0251 (1986) by C. Hull



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating two heterotic flux backgrounds
SUSY conditions in the presence of H .= 0 and Bianchi id.:

Nucl. Phys. B 274 (1986) 253 by A. Strominger

Cambridge Print 86-0251 (1986) by C. Hull

H = dB+α
′

4
[ω3(M)−tr

(
A ∧ dA− i 2

3
A3
)

] ,



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating two heterotic flux backgrounds
SUSY conditions in the presence of H .= 0 and Bianchi id.:

Nucl. Phys. B 274 (1986) 253 by A. Strominger

Cambridge Print 86-0251 (1986) by C. Hull

H = dB+α
′

4
[ω3(M)−tr

(
A ∧ dA− i 2

3
A3
)

] , dH = α
′

4
[tr(R∧R)−tr(F∧F)] .



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating two heterotic flux backgrounds
SUSY conditions in the presence of H .= 0 and Bianchi id.:

Nucl. Phys. B 274 (1986) 253 by A. Strominger

Cambridge Print 86-0251 (1986) by C. Hull

H = dB+α
′

4
[ω3(M)−tr

(
A ∧ dA− i 2

3
A3
)

] , dH = α
′

4
[tr(R∧R)−tr(F∧F)] .

Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating two heterotic flux backgrounds
SUSY conditions in the presence of H .= 0 and Bianchi id.:

Nucl. Phys. B 274 (1986) 253 by A. Strominger

Cambridge Print 86-0251 (1986) by C. Hull

H = dB+α
′

4
[ω3(M)−tr

(
A ∧ dA− i 2

3
A3
)

] , dH = α
′

4
[tr(R∧R)−tr(F∧F)] .

Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi

Two N = 2 solutions: (non)-Kähler transition via dualities.



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating two heterotic flux backgrounds
SUSY conditions in the presence of H .= 0 and Bianchi id.:

Nucl. Phys. B 274 (1986) 253 by A. Strominger

Cambridge Print 86-0251 (1986) by C. Hull

H = dB+α
′

4
[ω3(M)−tr

(
A ∧ dA− i 2

3
A3
)

] , dH = α
′

4
[tr(R∧R)−tr(F∧F)] .

Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi

Two N = 2 solutions: (non)-Kähler transition via dualities.

Minternal T2 ×K3



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating two heterotic flux backgrounds
SUSY conditions in the presence of H .= 0 and Bianchi id.:

Nucl. Phys. B 274 (1986) 253 by A. Strominger

Cambridge Print 86-0251 (1986) by C. Hull

H = dB+α
′

4
[ω3(M)−tr

(
A ∧ dA− i 2

3
A3
)

] , dH = α
′

4
[tr(R∧R)−tr(F∧F)] .

Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi

Two N = 2 solutions: (non)-Kähler transition via dualities.

Minternal T2 ×K3

ds2
6 e2φds2

B + |dz|2



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating two heterotic flux backgrounds
SUSY conditions in the presence of H .= 0 and Bianchi id.:

Nucl. Phys. B 274 (1986) 253 by A. Strominger

Cambridge Print 86-0251 (1986) by C. Hull

H = dB+α
′

4
[ω3(M)−tr

(
A ∧ dA− i 2

3
A3
)

] , dH = α
′

4
[tr(R∧R)−tr(F∧F)] .

Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi

Two N = 2 solutions: (non)-Kähler transition via dualities.

Minternal T2 ×K3

ds2
6 e2φds2

B + |dz|2

eφ eφ



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating two heterotic flux backgrounds
SUSY conditions in the presence of H .= 0 and Bianchi id.:

Nucl. Phys. B 274 (1986) 253 by A. Strominger

Cambridge Print 86-0251 (1986) by C. Hull

H = dB+α
′

4
[ω3(M)−tr

(
A ∧ dA− i 2

3
A3
)

] , dH = α
′

4
[tr(R∧R)−tr(F∧F)] .

Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi

Two N = 2 solutions: (non)-Kähler transition via dualities.

Minternal T2 ×K3

ds2
6 e2φds2

B + |dz|2

eφ eφ

B-field 0



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating two heterotic flux backgrounds
SUSY conditions in the presence of H .= 0 and Bianchi id.:

Nucl. Phys. B 274 (1986) 253 by A. Strominger

Cambridge Print 86-0251 (1986) by C. Hull

H = dB+α
′

4
[ω3(M)−tr

(
A ∧ dA− i 2

3
A3
)

] , dH = α
′

4
[tr(R∧R)−tr(F∧F)] .

Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi

Two N = 2 solutions: (non)-Kähler transition via dualities.

Minternal T2 ×K3

ds2
6 e2φds2

B + |dz|2

eφ eφ

B-field 0
Gauge field F F $= 0 on B



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating two heterotic flux backgrounds
SUSY conditions in the presence of H .= 0 and Bianchi id.:

Nucl. Phys. B 274 (1986) 253 by A. Strominger

Cambridge Print 86-0251 (1986) by C. Hull

H = dB+α
′

4
[ω3(M)−tr

(
A ∧ dA− i 2

3
A3
)

] , dH = α
′

4
[tr(R∧R)−tr(F∧F)] .

Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi

Two N = 2 solutions: (non)-Kähler transition via dualities.

T2 ↪→ M
Minternal T2 ×K3 ↓

K3
ds2

6 e2φds2
B + |dz|2

eφ eφ

B-field 0
Gauge field F F $= 0 on B



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating two heterotic flux backgrounds
SUSY conditions in the presence of H .= 0 and Bianchi id.:

Nucl. Phys. B 274 (1986) 253 by A. Strominger

Cambridge Print 86-0251 (1986) by C. Hull

H = dB+α
′

4
[ω3(M)−tr

(
A ∧ dA− i 2

3
A3
)

] , dH = α
′

4
[tr(R∧R)−tr(F∧F)] .

Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi

Two N = 2 solutions: (non)-Kähler transition via dualities.

T2 ↪→ M
Minternal T2 ×K3 ↓

K3
ds2

6 e2φds2
B + |dz|2 e2φds2

B + |dz + α|2

eφ eφ

B-field 0
Gauge field F F $= 0 on B



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating two heterotic flux backgrounds
SUSY conditions in the presence of H .= 0 and Bianchi id.:

Nucl. Phys. B 274 (1986) 253 by A. Strominger

Cambridge Print 86-0251 (1986) by C. Hull

H = dB+α
′

4
[ω3(M)−tr

(
A ∧ dA− i 2

3
A3
)

] , dH = α
′

4
[tr(R∧R)−tr(F∧F)] .

Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi

Two N = 2 solutions: (non)-Kähler transition via dualities.

T2 ↪→ M
Minternal T2 ×K3 ↓

K3
ds2

6 e2φds2
B + |dz|2 e2φds2

B + |dz + α|2

eφ eφ eφ

B-field 0
Gauge field F F $= 0 on B



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating two heterotic flux backgrounds
SUSY conditions in the presence of H .= 0 and Bianchi id.:

Nucl. Phys. B 274 (1986) 253 by A. Strominger

Cambridge Print 86-0251 (1986) by C. Hull

H = dB+α
′

4
[ω3(M)−tr

(
A ∧ dA− i 2

3
A3
)

] , dH = α
′

4
[tr(R∧R)−tr(F∧F)] .

Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi

Two N = 2 solutions: (non)-Kähler transition via dualities.

T2 ↪→ M
Minternal T2 ×K3 ↓

K3
ds2

6 e2φds2
B + |dz|2 e2φds2

B + |dz + α|2

eφ eφ eφ

B-field 0 B = Re(α ∧ dz)
Gauge field F F $= 0 on B



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating two heterotic flux backgrounds
SUSY conditions in the presence of H .= 0 and Bianchi id.:

Nucl. Phys. B 274 (1986) 253 by A. Strominger

Cambridge Print 86-0251 (1986) by C. Hull

H = dB+α
′

4
[ω3(M)−tr

(
A ∧ dA− i 2

3
A3
)

] , dH = α
′

4
[tr(R∧R)−tr(F∧F)] .

Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi

Two N = 2 solutions: (non)-Kähler transition via dualities.

T2 ↪→ M
Minternal T2 ×K3 ↓

K3
ds2

6 e2φds2
B + |dz|2 e2φds2

B + |dz + α|2

eφ eφ eφ

B-field 0 B = Re(α ∧ dz)
Gauge field F F $= 0 on B F = 0



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating two heterotic flux backgrounds
SUSY conditions in the presence of H .= 0 and Bianchi id.:

Nucl. Phys. B 274 (1986) 253 by A. Strominger

Cambridge Print 86-0251 (1986) by C. Hull

H = dB+α
′

4
[ω3(M)−tr

(
A ∧ dA− i 2

3
A3
)

] , dH = α
′

4
[tr(R∧R)−tr(F∧F)] .

Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi

Two N = 2 solutions: (non)-Kähler transition via dualities.

T2 ↪→ M
Minternal T2 ×K3 ↓

K3
ds2

6 e2φds2
B + |dz|2 e2φds2

B + |dz + α|2

eφ eφ eφ

B-field 0 B = Re(α ∧ dz)
Gauge field F F $= 0 on B F = 0

Twist map? Only needs connection !



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating two heterotic flux backgrounds
SUSY conditions in the presence of H .= 0 and Bianchi id.:

Nucl. Phys. B 274 (1986) 253 by A. Strominger

Cambridge Print 86-0251 (1986) by C. Hull

H = dB+α
′

4
[ω3(M)−tr

(
A ∧ dA− i 2

3
A3
)

] , dH = α
′

4
[tr(R∧R)−tr(F∧F)] .

Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi

Two N = 2 solutions: (non)-Kähler transition via dualities.

T2 ↪→ M
Minternal T2 ×K3 ↓

K3
ds2

6 e2φds2
B + |dz|2 e2φds2

B + |dz + α|2

eφ eφ eφ

B-field 0 B = Re(α ∧ dz)
Gauge field F F $= 0 on B F = 0

Twist map? Only needs connection !



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating two heterotic flux backgrounds
SUSY conditions in the presence of H .= 0 and Bianchi id.:

Nucl. Phys. B 274 (1986) 253 by A. Strominger

Cambridge Print 86-0251 (1986) by C. Hull

H = dB+α
′

4
[ω3(M)−tr

(
A ∧ dA− i 2

3
A3
)

] , dH = α
′

4
[tr(R∧R)−tr(F∧F)] .

Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi

Two N = 2 solutions: (non)-Kähler transition via dualities.

T2 ↪→ M
Minternal T2 ×K3 ↓

K3
ds2

6 e2φds2
B + |dz|2 e2φds2

B + |dz + α|2

eφ eφ eφ

B-field 0 B = Re(α ∧ dz)
Gauge field F F $= 0 on B F = 0

Twist map? Only needs connection !



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating two heterotic flux backgrounds
SUSY conditions in the presence of H .= 0 and Bianchi id.:

Nucl. Phys. B 274 (1986) 253 by A. Strominger

Cambridge Print 86-0251 (1986) by C. Hull

H = dB+α
′

4
[ω3(M)−tr

(
A ∧ dA− i 2

3
A3
)

] , dH = α
′

4
[tr(R∧R)−tr(F∧F)] .

Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi

Two N = 2 solutions: (non)-Kähler transition via dualities.

T2 ↪→ M
Minternal T2 ×K3 ↓

K3
ds2

6 e2φds2
B + |dz|2 e2φds2

B + |dz + α|2

eφ eφ eφ

B-field 0 B = Re(α ∧ dz)
Gauge field F F $= 0 on B F = 0

Twist map? Only needs connection ! No need of B-transform !



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating two heterotic flux backgrounds
SUSY conditions in the presence of H .= 0 and Bianchi id.:

Nucl. Phys. B 274 (1986) 253 by A. Strominger

Cambridge Print 86-0251 (1986) by C. Hull

H = dB+α
′

4
[ω3(M)−tr

(
A ∧ dA− i 2

3
A3
)

] , dH = α
′

4
[tr(R∧R)−tr(F∧F)] .

Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi

Two N = 2 solutions: (non)-Kähler transition via dualities.

T2 ↪→ M
Minternal T2 ×K3 ↓

K3
ds2

6 e2φds2
B + |dz|2 e2φds2

B + |dz + α|2

eφ eφ eφ

B-field 0 B = Re(α ∧ dz)
Gauge field F F $= 0 on B F = 0

Twist map? Only needs connection ! No need of B-transform !
H ′ = i(∂ − ∂)J ′ = (∂ − ∂)(. . . ) + d (Re(α ∧ dz)) .



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating two heterotic flux backgrounds
SUSY conditions in the presence of H .= 0 and Bianchi id.:

Nucl. Phys. B 274 (1986) 253 by A. Strominger

Cambridge Print 86-0251 (1986) by C. Hull

H = dB+α
′

4
[ω3(M)−tr

(
A ∧ dA− i 2

3
A3
)

] , dH = α
′

4
[tr(R∧R)−tr(F∧F)] .

Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi

Two N = 2 solutions: (non)-Kähler transition via dualities.

T2 ↪→ M
Minternal T2 ×K3 ↓

K3
ds2

6 e2φds2
B + |dz|2 e2φds2

B + |dz + α|2

eφ eφ eφ

B-field 0 B = Re(α ∧ dz)
Gauge field F F $= 0 on B F = 0

Twist map? Only needs connection ! No need of B-transform !
H ′ = i(∂ − ∂)J ′ = (∂ − ∂)(. . . ) + d (Re(α ∧ dz)) .

Transform the gauge field? Included in H , but...



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions
Solutions

Heterotic

Conclusion

Relating two heterotic flux backgrounds
SUSY conditions in the presence of H .= 0 and Bianchi id.:

Nucl. Phys. B 274 (1986) 253 by A. Strominger

Cambridge Print 86-0251 (1986) by C. Hull

H = dB+α
′

4
[ω3(M)−tr

(
A ∧ dA− i 2

3
A3
)

] , dH = α
′

4
[tr(R∧R)−tr(F∧F)] .

Non-trivial solutions were found later :
hep-th/9908088 by K. Dasgupta, G. Rajesh, S. Sethi

Two N = 2 solutions: (non)-Kähler transition via dualities.

T2 ↪→ M
Minternal T2 ×K3 ↓

K3
ds2

6 e2φds2
B + |dz|2 e2φds2

B + |dz + α|2

eφ eφ eφ

B-field 0 B = Re(α ∧ dz)
Gauge field F F $= 0 on B F = 0

Twist map? Only needs connection ! No need of B-transform !
H ′ = i(∂ − ∂)J ′ = (∂ − ∂)(. . . ) + d (Re(α ∧ dz)) .

Transform the gauge field? Included in H , but...
Extend T∗⊕T with gauge bundle, apply an O(d + 16, d + 16)...



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions

Conclusion

Conclusion



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions

Conclusion

Conclusion

Nil/solvmanifolds (twisted tori): interestingMinternal for flux
compactifications, towards Minkowski, dS and AdS.



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions

Conclusion

Conclusion

Nil/solvmanifolds (twisted tori): interestingMinternal for flux
compactifications, towards Minkowski, dS and AdS.
Properties (compactness, topology) dictated by algebraic data.



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions

Conclusion

Conclusion

Nil/solvmanifolds (twisted tori): interestingMinternal for flux
compactifications, towards Minkowski, dS and AdS.
Properties (compactness, topology) dictated by algebraic data.



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions

Conclusion

Conclusion

Nil/solvmanifolds (twisted tori): interestingMinternal for flux
compactifications, towards Minkowski, dS and AdS.
Properties (compactness, topology) dictated by algebraic data.

Twist transformation: relates one-forms of torus and twisted
tori.
Transforms NSNS sector and RR fluxes (GCG).



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions

Conclusion

Conclusion

Nil/solvmanifolds (twisted tori): interestingMinternal for flux
compactifications, towards Minkowski, dS and AdS.
Properties (compactness, topology) dictated by algebraic data.

Twist transformation: relates one-forms of torus and twisted
tori.
Transforms NSNS sector and RR fluxes (GCG).

Twist relates solutions on torus and on nil/solvmanifolds.



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions

Conclusion

Conclusion

Nil/solvmanifolds (twisted tori): interestingMinternal for flux
compactifications, towards Minkowski, dS and AdS.
Properties (compactness, topology) dictated by algebraic data.

Twist transformation: relates one-forms of torus and twisted
tori.
Transforms NSNS sector and RR fluxes (GCG).

Twist relates solutions on torus and on nil/solvmanifolds.
Relate Kähler/non- Kähler solutions of heterotic string.



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions

Conclusion

Conclusion

Nil/solvmanifolds (twisted tori): interestingMinternal for flux
compactifications, towards Minkowski, dS and AdS.
Properties (compactness, topology) dictated by algebraic data.

Twist transformation: relates one-forms of torus and twisted
tori.
Transforms NSNS sector and RR fluxes (GCG).

Twist relates solutions on torus and on nil/solvmanifolds.
Relate Kähler/non- Kähler solutions of heterotic string.

Use the twist to find new (dS) solutions?



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions

Conclusion

Conclusion

Nil/solvmanifolds (twisted tori): interestingMinternal for flux
compactifications, towards Minkowski, dS and AdS.
Properties (compactness, topology) dictated by algebraic data.

Twist transformation: relates one-forms of torus and twisted
tori.
Transforms NSNS sector and RR fluxes (GCG).

Twist relates solutions on torus and on nil/solvmanifolds.
Relate Kähler/non- Kähler solutions of heterotic string.

Use the twist to find new (dS) solutions?

Compactness discussion: relation to non-geometry?



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions

Conclusion

Conclusion

Nil/solvmanifolds (twisted tori): interestingMinternal for flux
compactifications, towards Minkowski, dS and AdS.
Properties (compactness, topology) dictated by algebraic data.

Twist transformation: relates one-forms of torus and twisted
tori.
Transforms NSNS sector and RR fluxes (GCG).

Twist relates solutions on torus and on nil/solvmanifolds.
Relate Kähler/non- Kähler solutions of heterotic string.

Use the twist to find new (dS) solutions?

Compactness discussion: relation to non-geometry?

World-sheet aspect: duality?



David
ANDRIOT

Introduction

Solvmanifolds

Relating
solutions

Conclusion

Conclusion

Nil/solvmanifolds (twisted tori): interestingMinternal for flux
compactifications, towards Minkowski, dS and AdS.
Properties (compactness, topology) dictated by algebraic data.

Twist transformation: relates one-forms of torus and twisted
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Use the twist to find new (dS) solutions?

Compactness discussion: relation to non-geometry?

World-sheet aspect: duality?

Effective actions transitions?
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