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9 [X2, X3] = X1, f'y3 = 1: nilpotent, g = Heisz & R?
S{ll} — H/Fl

M=GT = | x (T° =R*/Z?)
T2
{23}
— del = —e? A €2, el =dz! — 22dz3, €2 = dz?, €3 = da?

@ Nilpotent cases: of tori.
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TdmG=1 = N/Ty M= G/T

St = G/(NT)
G is almost nilpotent... Fibration encoded in

N/T'y is a nilmanifold...

Further particular case: N = RUmG—1,
= Ad o, (n) = et 2do (),

Three-dimensional examples:

B> (83 5) Bi1 (954)
o e i o e e

sin(t)  cos(t)

u<t1>‘ : n(t2)

Almost nilpotent...
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The RR fluxes can be obtained out of SUSY equations.

The twist transformation can be in this geometric
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— include transformation on B, g and ¢.
— transformation of RR fluxes.

Two solutions can be related...
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hep-th/0609124 by M. Grana, R. Minasian, M. Petrini, A. Tomasiello
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Explicit non-trivial fibration solutions?=- among
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Another solution on S* — M — (T? — M; — T?).




David
ANDRIOT

Introduction

Solvmanifolds

Relating

olutions
Solutions

Heterotic

Conclusio

Minternal T6 — T2 X T4
ds? eszdzé + e~ 24|de|? eszdzé + e?4|dz + of?
Sources, 6 03,60=12 0O5//F,0=0
RR gsFs = e* xd(e=*4) |, (F3) | gsF3 = —e %4 xd(e24))
NSNS (H = gs * F3) 0
e? Js gse2A

Twist transformation?

Possible metric transformation, not for B, but on F.
Provide a connection «, 67 = —Z . B-transform if needed...
— v

T-duals only for very specific H # 0.

1S
2

Explicit non-trivial fibration solutions?=- among

hep-th/0609124 by M. Grana, R. Minasian, M. P(*‘n’ini. A. Tomasiello
Another solution on 5 < M — (T? — M; — T?).
Obtained by a twist from (72 — M; — T3) x 5' !



David
ANDRIOT

Introduction

Solvmanifolds

Relating

olutions
Solutions

Heterotic

Conclusion

Minternal T6 — T2 X T4
ds? eszdzé + e~ 24|de|? eszdzé + e?4|dz + of?
Sources, 6 03,60=12 0O5//F,0=0
RR gsFs = e* xd(e=*4) |, (F3) | gsF3 = —e %4 xd(e24))
NSNS (H = gs * F3) 0
e? Js gse2A

Twist transformation?

Possible metric transformation, not for B, but on F.
Provide a connection a, 6 = —Z . B-transform if needed...
— v

T-duals only for very specific H # 0.

Explicit non-trivial fibration solutions?=- among

hep-th/0609124 by M. Grana, R. Minasian, M. Petrini, A. Tomasiello

Another solution on 5 < M — (T? — M; — T?).
Obtained by a twist from (72 — M; — T3) x 5' !
Iterated fibration.




David
ANDRIOT

Introduction

Solvmanifolds

Relating

olutions
Solutions

Heterotic

Conclusion

Minternal T6 — T2 X T4
ds? eszdzé + e~ 24|de|? eszdzé + e?4|dz + of?
Sources, 6 03,60=12 0O5//F,0=0
RR gsFs = e* xd(e=*4) |, (F3) | gsF3 = —e %4 xd(e24))
NSNS (H = gs * F3) 0
e? Js gse2A

Twist transformation?

Possible metric transformation, not for B, but on F.
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T-duals only for very specific H # 0.

Explicit non-trivial fibration solutions?=- among

hep-th/0609124 by M. Grana, R. Minasian, M. Petrini, A. Tomasiello
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Obtained by a twist from (72 — M; — T3) x 5' !
Iterated fibration. No 7% T-dual.
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For heterotic: no GCG construction = first try to do it !

— construct pure spinors, twist them; SUSY conditions.

Niop =1 : € = decomposition on 4D + 6D for Nyp = 1:
€E=(+ QM +6-Qn- .

Only one internal spinor n4 (SU(3) structure) = Pure spinors:

U, = Selnen,=ete
U = 8efn@nl =—ie Q.
As before, except that : B plays a very different role

in heterotic string...
T*@® T and not E...
— The generalized vielbein £ point of view: more difficult.

Twist W: only connection transformation, no B-transform
— previous solutions mapped !
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0Ym = (D — ZHM)G =0,
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ox=2 Fe=0.
— decompose on 4D + 6D, and work out conditions for W
Same as "type A" solutions of type IIB with FF =0, A =0

— worked out in

hep-th/0406137 by M. Grana, R. Minasian, M. Petrini, A. Tomasiello

Rewrite the result as a wedge product:
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Equation for ¥_: integrability of complex structure
— Minternal 18 complex (GCY).
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