Impact of ID and MS Misalignments on Z' Analysis

Antonio Salvucci, Claudio Gatti

Tor Vergata University, Roma Laboratori Nazionali di Frascati, INFN

Outline

- ID & MS Misaligned Geometry Tag
- Reconstruction Method from RDO files
- Impact on momentum resolution
- Impact on track and trigger efficiency
- Impact on selection
- Conclusions

ID & MS Misaligned Geometry Tag

MS \rightarrow a misalignment of o(500 $\mu m)$ on MS chambers % MS (shifts and rotations)

 $ID \rightarrow curl$ (charge asymmetry) weak mode.

For curl deformation, 2 terms are introduced:

Antonio Salvucci - CERN, Geneva

Reconstruction Method from RDO files

This study was performed with a small Z' $\rightarrow \mu\mu$ dataset of 1250 events

mc08.105601.Pythia_Zprime_mumu_SSM1000.digit.RDO.e352_s462_d126_tid026144

For reconstruction we used:

Athena: 14.2.25.6 (r617)

Job-tranform: csc_reco_trf.py with a properly modified skeleton.csc_esd.py

RunArgs: ConditionsTag = OFLCOND-SIM-00-00-06, GeometryVersion = ATLAS-GEO-02-01-00, DBRelease = DBRelease-6.5.1, JobConfig = SetJetConstants-02-000.py, TriggerConfig = lumi1E31_no_Bphysics_no_prescale

Misaligned geometry tag loading (lines added to skeleton.csc_esd.py)

ID Geometry

siOverride = 'InDetSi_CSCMisaligned_RDeltaPhi_03' trtOverride = 'InDetTRT_CSCMisaligned_RDeltaPhi_03' from IOVDbSvc.CondDB import conddb include ("DetDescrCondAthenaPool/DetDescrCondAthenaPool_joboptions.py") conddb.addOverride('/Indet/Align', siOverride) conddb.addOverride('/TRT/Align', trtOverride)

MS Geometry

from MuonGeoModel.MuonGeoModelConf import MuonDetectorTool MuonDetectorTool.OutputLevel = VERBOSE MessageSvc.setDebug+=["MGM::MuonDetectorManager::updateAlignment"] ToolSvc.MGM_AlignmentDbTool.OutputLevel = DEBUG from IOVDbSvc.IOVDbSvcConf import * print "henri-0.5 (500 microns smearing)" conddb.addFolder("MUONALIGN","/MUONALIGN/MDT/BARREL<tag>MuonAlignMDTBarrelAlign-SIMU-0004</tag>") conddb.addFolder("MUONALIGN","/MUONALIGN/MDT/ENDCAP/SIDEA<tag>MuonAlignMDTEndCapAAlign-SIMU-0004</tag>") conddb.addFolder("MUONALIGN","/MUONALIGN/MDT/ENDCAP/SIDEA<tag>MuonAlignMDTEndCapAAlign-SIMU-0004</tag>")

#04 for Cur-Residual, 03 for Curl-Large #04 for Cur-Residual, 03 for Curl-Large

Impact on p_r resolution (Inner Detector)

Geometry tags considered in this study are:

MS500 MS500+Curl-Residual Curl-Residual MS500+Curl-Large

The resolutions are estimated by fitting with a Gaussian function the residual distribution $p_T^{mo} - p_T^{me}$ for several values of p_T^{me} , in a region within +- rms around the mean value.

We have considered only muons with $|\eta| < 2.5$ and $p_T > 20$ GeV

The matching between true MC muons from Z' and reconstructed tracks, is obtained by choosing the best match $\Delta R = \sqrt{\Delta \eta^{E} + \Delta \phi^{E}}$ and rejecting cases with:

 $\Delta R > 400 \text{ mrad}$ for MS standalone tracks

 $\Delta R > 50 mrad$ for ID and combined tracks

Impact on p_r resolution (Inner Detector)

Impact on p_r resolution (Muon Spectrometer)

With Curl-Large geometry, the standalone is unchanged with respect to ideal alignment, while for combined the error on ID sagitta reflects on momentum resolution.

Antonio Salvucci - CERN, Geneva

Impact on track efficiency

In the search of new physics channel it is essential to keep the selection efficiency as high as possible.

Impact on track efficiency

We can see a different situation when the efficiency in combining the two tracks is considered.

In fact, in this case, reconstruction efficiencies drop to lower values at higher p_T .

When MS500 geometry is used, the drop in efficiency is very similar for both Staco and MuonBoy.

Instead, when **Curl-Large** geometry is used, the reconstruction <u>efficiency</u> for <u>MuidCB</u> algorithm <u>drops</u> <u>down to 40%</u>, while the <u>Staco</u> algorithm is less sensitive.

Clearly, since the standalone efficiencies are unchanged when the misalignments are introduced, this effect is due to the probability of combining the ID and MS tracks.

Impact on trigger efficiency

Since the software trigger level (EF) uses MuidCB as tracking algorithm, the impact of misalignments on track efficiency reflects on the trigger perfomance.

Impact on selection

Z' events are selected by requiring 2 reconstructed muon tracks (SA or CB), with opposite charge, $|\eta|$ <2.5 and p_T >20 GeV. We keep all events with invariant mass within 500 and 1500 GeV and satisfying the µ20 trigger chain.

Impact on selection

Algorithm	2 tracks	p _T cut	charge	Muu cut	trigger
MuonBoy	83.9 %	80.1 %	77.9 %	72.6 %	51.8 %
Staco	75.9 %	75.1 %	74.4 %	68.4 %	49.3 %
MuidSA	82.8 %	76.8 %	75.0 %	71.4 %	51.1 %
MuidCB	34.6 %	33.0 %	32.9 %	29.4 %	28.2 %

Curl-Large

Impact on selection

MS500+Curl-Residual

Algorithm	2 tracks	p _T cut	charge	Muu cut	trigger
MuonBoy	83.5 %	79.4 %	71.2 %	54.3 %	50.8 %
Staco	65.8 %	64.8 %	64.4 %	59.7 %	55.9 %
MuidSA	82.4 %	76.7 %	68.6 %	53.9 %	50.4 %
MuidCB	65.4 %	64.3 %	64.1 %	58.0 %	55.8 %

trigger

41.8 %

38.8 %

41.6 %

27.8 %

Conclusions

- The larger effects of misalignments are observed for combined tracks, in particular for the MuidCB algorithm, the only used for reconstructing and combining MS tracks at trigger level.
- In the ID, we observe a μ^+ charge mis-identification.
- Curl-Large and MS500 geometry must to be considered as pessimistic cases: for early data we expect for the ID something similar to Curlresidual, while for the MS we expect misalignment of the order of 100 μm.
- It is foreseen to have a MS-standalone trigger to avoid any effect related to the inter-calibration of the two detectors.
- In the future we plan to study the effects of other kind of misalignments, and to determine the impact on the discovery potential.