Searching for new light particles with positrons on target

Venelin Kozhuharov

for the PADME collaboration

Sofia University* & LNF–INFN

21.11.2019

* partially supported by BG NSF, DN08-14/14.12.2016 & LNF-SU 70-06-497/07-10-2014

Outline

- Motivation
- Technique
- PADME @ LNF
- Further options
- Conclusions

Mass

Hidden sector and Dark Photon

The effective interaction that can be studied is

 $- \quad q_{_f} \rightarrow 0 \text{ for some flavours}$

- Textbook scenario, could address the (g_µ-2) discrepancy, abundance of antimatter in cosmic rays, signals for DM scattering
 - General U'(1) and kinetic mixing with B (A', Z')
 - Universal coupling proportional to the q_{em}
 - Just single additional parameter ϵ

$$L_{mix} = -\frac{\epsilon}{2} F_{\mu\nu}^{QED} F_{dark}^{\mu\nu}$$

- Leptophilic/leptophobic dark photon
 - "Gauging" SM accidental symmetries: (e.g. L μ L τ , B L)
- Related to Dark matter and its interactions

Variety of Dark Photons ...

- Part of the phenomenology of the Dark Photon depends on what we don't know
 - Is it really a mediator between the visible and the hidden world?
 - Is it a manifestation of a Fifth Force?
 - How does it come to couple to SM particles?
 - Mixing with SM gauge boson?
 - Universal versus non-universal couplings?
- And moreover what the hidden world looks like?

Light

Constrained initial process

- Initial state is carefully prepared
 - A' as a product of SM particles decays: π^0 , ρ , η
 - e+e- colliders
 - Annihilation
- Possible A' final states
 - A' \rightarrow SM particles, all states reconstruction
 - Provides significant background suppression
 - A' \rightarrow DM particles
 - Determination of A' properties through missing momentum/energy/ mass

- Positron beam on a thin target
- Positron momentum is determined by the accelerator characteristics
- Missing mass resolution: annihilation point, E_{v} , ϕ_{v}

 $\frac{\sigma(e^+e^- \to U\gamma)}{\sigma(e^+e^- \to \gamma\gamma)} = \frac{N(U\gamma)}{N(\gamma\gamma)} * \frac{Acc(\gamma\gamma)}{Acc(U\gamma)} = \epsilon^2 * \delta,$

- Clear 2 body correlation
- **Background minimization**
 - Best possible resolution on energy/angle measurement
 - Dominant process in e+/e- interactions with matter is bremsstrahlung
 - Photons vetoing
 - Minimize the interaction remnants + vetoing

Venelin Kozhuharov, LDMA 2019

Cross section enhancement with the

Backgrounds

e⁺ beam

e⁺ beam

e⁺beam

γ

γ

γ

 e^+

- Bremsstrahlung in the field of the target nuclei
 - Photons mostly @ low energy, background dominates the high missing masses
 - An additional lower energy positron that could be detected due to stronger deflection
 - 2 photon annihilation
 - Peaks at $M_{miss} = 0$
 - Quasi symmetric in gamma angles for $E_{\gamma} > 50 \text{ MeV}$
 - 3 photon annihilation
 - Symmetry is lost decrease in the vetoing capabilities
 - Radiative Bhabha scattering
 - Topology close to bremsstrahlung

Background process	Cross section e⁺@550 MeV beam	Comment Carbon target
$e^+e^- \rightarrow \gamma\gamma$	1.55 mb	
$e^{\scriptscriptstyle +} + N \to e^{\scriptscriptstyle +} N \; \gamma$	4000 mb	$E_{\gamma} > 1 MeV$
е⁺е⁻ →ууу	0.16 mb	CalcHEP, $E_{\gamma} > 1 MeV$
$e^+e^- \rightarrow e^+e^-\gamma$	180 mb	CalcHEP, $E_{\gamma} > 1 MeV$

Positron Annihilation into Dark Matter Experiment

Adv. HEP 2014 (2014) 959802

- Small scale fixed target experiment
 - e⁺ @ Frascati Beam test facility
 - Solid state target
 - Charged particles detectors
 - Calorimeter

- Vacuum: ~2*10⁻⁷ mbar
 - Two major sections: inside and outside the dipole magnet
 - Austenitic steel, thermally treated to reach the desired magnetic permeability

PADME @ BTF

	Electrons	Positrons	
Maximum beam energy (E _{beam})[MeV]	750 MeV	550 MeV	
Linac energy spread [Dp/p]	0.5%	1%	
Typical Charge [nC]	2 nC	0.85 nC	
Bunch length [ns]	1.5 – 40 (can reach 200 in 2016)		
Linac Repetition rate	1-50 Hz	1-50 Hz	
Typical emittance [mm mrad]	1	\sim 1.5	
Beam spot s [mm]	<1 mm		
Beam divergence	1-1.5 mrad		

- BTF line completely dismounted
- Hall and infrastructure refurbished, control room moved
- All the components placed to their new nominal position

Outstanding support from the laboratory!

Data taking

- PADME commissioning and Run-1 started in Autumn 2018 and ended on February 25th
 - $\sim ~7 \times 10^{12}$ positrons on target recorded
 - Data quality and detector calibration in progress
- PADME Run-2
 - July 2019, few days of data
 - Detector performance/calibration checks

Active diamond target

Polycrystalline diamonds

- 100 μm thickness:
- 16 × 1 mm strip and X-Y readout in a single detector
- Graphite electrodes using excimer laser (Lecce)
- PADME prototype 20 × 20 mm² produced and tested 2015
- Low noise CSA integrated in the 16 channel chip AMADEUS from IDEAS

Target performance

- Precise measurement and control of the beam parameters
 - Position
 - Multiplicity
 - Beam steering diagnostics
- Extensive work on calibration

$\frac{\text{PADME Diamond}}{\text{CCD}} \approx 12 \ \mu\text{m}$

Calorimeter: ECal

- ECAL: The heart of PADME
- 616 BGO crystals, 2.1 x 2.1 x 23 cm³
- BGO covered with diffuse reflective TiO₂ paint
 - additional optical isolation: 50 100 µm black tedlar foils

ECal Energy map (approx. MeV)

Charge Charge 2009

- Calibration at several stages:
 - BGO + PMT equalization with 22Na source before constructio
 - Cosmic rays calibration using the MPV of the spectrum

Small angle calorimeter

- 25 crystals 5 x 5 matrix, Cherenkov PbF₂
- Dimensions of each crystal: 3 × 3 × 14 cm³
- 50 cm behind ECal
- PMT readout: Hamamatsu R13478UV with custom dividers
- Angular acceptance: [0,19] mrad

- Multiphoton events suppression
- Bremsstrahlung events identification
- Provides online information of the beam profile

SAC Occupancy

Counts

Time (ns)

Charged particle detectors

- An extensive work on the preparation, test and commissioning of the individual detecting elements
- 96 + 96 (90) + 16 (x2) scintillator-WLS-SiPM RO channels
- Segmentation provides momentum measurement down to ~ 5 MeV resolution magnet

- Online time resolution: $\sim 2 \text{ ns}$
- Offline time resolution after fine T_0 calculation better than 1 ns

- Custom SiPM electronics, Hamamatsu S13360 3 mm, 25µm pixel SiPM
- Differential signals to the controllers, HV, thermal and current monitoring

PADME data

PADME sensitivity

2.5x10¹⁰ fully GEANT4 simulated 550MeV e+ on target events

Number of BG events is extrapolated to 1x10¹³ electrons on target

$$\frac{\Gamma(e^+e^- \to A'\gamma)}{\Gamma(e^+e^- \to \gamma\gamma)} = \frac{N(A'\gamma)}{N(\gamma)} \frac{Acc(\gamma\gamma)}{Acc(A'\gamma)} = \varepsilon \cdot \delta$$

PADME:

2 years of data taking at 60% efficiency with bunch length of 200 ns 4x10¹³ EOT = **20000 e**⁺/bunch × 2 × **3.1 · 10**⁷s x 0.6 · **49 Hz**

arXiv:1708.07901

Venelin Kozhuharov, LDMA 2019

18

VEPP 3: first option

• Storage ring is on top, easy access below

Extraction line

Experiment region

- Suitable place to install the experimental setup
 - Support and infrastructure exists
 - Detector wanted....

VEPP 3: second option

• A relatively "free" region exists also on the opposite side of the storage ring

New extraction place - @ internal target area

Potential experiment region

- However, non-negligible amount of work necessary
 - New extraction line (but a magnet exists)
 - Cut part of the wall ... and detector installation

Cornell positron beam

EPJ Web Conf. 142 (2017) 01001

- Extract positron beam from synchrotron (between CESR fills for xray program)
 - $E_{beam} = 1.8 5.3 \text{ GeV}$
 - I_{beam} ~ 2.3 nA at target
 - pulse structure: 168ns

ΡΑΟΜΕ @ DΑΦΝΕ

crystal

- DA Φ NE the Frascati ϕ -factory •
 - LINAC + e+/e- storage ring
- LINAC rate 50 Hz, 49 Hz for users •
- Beam energy O(550 MeV)•

POSEYDON arXiv:1711.06877

DADAE resonant extraction

- Long beam from the Linac (up to 324 ns)
 - 0.5 % momentum spread at injection
- RF off monochromatic extraction due to synchrotron losses
- Wigglers off (on), losses \sim 3 (6) keV per • turn
 - Spill length: 0.4 (0.2) ms
- $\Delta p/p = 1.4 \times 10^{-3}$
- Requires new injection and extraction lines

new injection chain

extraction

Ultra slow extraction

- Use crystal channelling ۲
- $N_{e+} = 2*10^{12}$ (1 A current in 120) bunches)
- Revolution time 324 ns
- 1 extracted particle per turn per bunch \rightarrow ~3*10⁸ e⁺ per second

J.Phys.Conf.Ser. 1067 (2018) no.6, 062006

septum

ΡΑΟΜΕ @ DΑΦΝΕ

Invisibly Decaying Dark Photon 18-214土 10 10- 5 BaBa 10-10-Belle II (20 fb -1) $\epsilon^{10^{-1}}$ PADME PADME PADME @Poseydon @Cornell @JLAB 10- 9 NA64 (4.3-1010 10-10 10-1 LDMX 10- 12 10- 13 10^{2} 10 10^{3} $m_{A'}$ [MeV]

- PADME@POSEYDON
 - Statistics determined by the requirement of ~100 e⁺ per 1 ns (due to ECal BGO)
 - 4*10⁷ positrons in a bunch of 400 μs
 - 10¹⁶ e⁺ in 1 year of operation
 - Assuming same background

Invisibly Decaying Dark Photon

- PADME @ DAΦNE Ultra slow extraction
 - Single particle mode
 - Single event sensitivity, zero background!
 - Number of positrons up to few*10¹⁵
 - Breakthrough in fixed target and a game changing option!

M_{miss} searches in e⁺ on target

	PADME	MMAPS	VEPP3	PADME @POSEYDON	PADME@DAΦNE Ultra slow
Place	LNF	Cornell	Novosibirsk	LNF	LNF
Beam energy	550 MeV	Up to 5.3 GeV	500 MeV	550 MeV	550 MeV
M _{A'} limit	23 MeV	74 MeV	22 MeV	23 MeV	23 MeV
Target thickness	2x10 ²² e ⁻ /cm ²	O(2x10 ²³) e ⁻ /cm ²	5x10 ¹⁵ e ⁻ /cm ²	2x10 ²² e ⁻ /cm ²	2x10 ²² e ⁻ /cm ²
Beam intensity	8 x 10 ⁻¹¹ mA	2.3 x 10 ⁻⁶ mA	30 mA	3 x 10 ⁻⁷ mA	4 x 10 ⁻⁸ mA
e⁺e⁻ → γγ rate [s⁻¹]	15	2.2 x 10 ⁶	1.5 x 10 ⁶	4*104	4500
ε² limit (plateau)	10 ⁻⁶ (10 ⁻⁷ SES)	10 ⁻⁶ - 10 ⁻⁷	10 ^{-7/-8}	10 -8 *	10 ⁻⁹ - 10 ⁻¹⁰ SES **
Time scale	now	?	2020 (ByPass)?		
Status	Run 1 Next run: 2020	Not funded Alternatives?	ByPass currently suspended?	In discussion	In discussion

* PADME background level assumption!

** with zero background assumption!

Perspectives

- The limit in the PADME sensitivity originates from
 - Statistics, sensitivity ~ sqrt(N)
 - Background due to overlapping, scales as N
 - e+ beam energy
- ALPs at PADME
 - Sensitivity estimation ongoing
 - Any Light Particle with mass below 23 MeV
- Possible improvements
 - Increase the statististics
 - PADME@VEPP internal gas target
 - PADME@DAΦNE
 - Increase the beam energy
 - Cornell, Jlab, etc...

N.B. Different experimental techniques, sometimes different prior assumptions!

Conclusion

- Missing mass searches provide a universal probe to new light states
- Using constrained initial state allows significant background suppression and control
- PADME detector status:
 - All systems operational after an intensive effort from the collaboration and the participating laboratories
- Data analysis ongoing
 - Detector performance reaching design parameters
- Cross fingers for new insight on Dark Mediators...
 - Various approaches, complementary techniques

PADME

P. Albicocco, F. Bossi, B. Buonomo, R. De Sangro, D. Domenici, G. Finocchiaro, L.G. Foggetta, A. Ghigo, F. Giacchino, P. Gianotti, A. Loreti, I. Sarra, B. Sciascia, T. Spadaro, E. Spiriti, E. Vilucchi, A.P. Caricato, F. Gontad, M. Martino, I. Oceano, F. Oliva, S. Spagnolo, C. Cesarotti, A. Frankenthal, J. Alexander, G. Chiodini, F. Ferrarotto, E. Leonardi, E. Long, F. Safai Tehrani, P. Valente, S. Fiore, G. Georgiev, V. Kozhuharov, B. Liberti, C. Taruggi, G.C.Organtini, G. Piperno, M. Raggi, L. Tsankov, S. Ivanov, S. Ivanov, R. Simeonov

