

Universität Zürich^{vzH}

LDM with proton beam-dumps and SHiP

Oliver Lantwin on behalf of the SHiP collaboration, and Rex Tayloe

[oliver.lantwin@cern.ch]

LDMA 2019, Venice

November 21, 2019

Search for light dark matter in neutrino beams

- A Search for sub-GeV dark matter via: Portal particles mediating SM and dark matter interactions
- Model consistent with thermal freeze out with low-mass dark matter (Phys.Rev. D95 (2017) no.3, 035006)

LSND, MiniBooNE, COHERENT, CCM search for this dark matter assuming:

 $\begin{array}{l} p \rightarrow {\rm beam \ dump} \rightarrow \pi^0/\eta \\ \pi^0/\eta \rightarrow \gamma + V \rightarrow \gamma + \chi^\dagger + \chi \end{array}$

And then search for χ interactions in large neutrino detectors via various reaction channels, eg:

ψ

LSND experiment at Los Alamos

- Liquid Scintillator Neutrino Detector at Los Alamos Natl Lab in 1994-1999
- 800 MeV protons on beam dump
- 170 ton scintillation/Cherenkov detector 30m from beam stop

Analysis:

• search for dark matter via:

$$p \rightarrow \text{beam dump} \rightarrow \pi^{0}$$

$$\pi^{0} \rightarrow \gamma + V \rightarrow \gamma + \chi^{\dagger} + \chi$$

$$\chi + e \rightarrow \chi + e$$

Results:

- expected sensitivities (10¹, 10³, 10⁶ events)
- and appearing as "LSND" in later plots
- from: Phys.Rev. D80 (2009) 095024

Exploring portals to a hidden sector through fixed targets

Brian Batell, Maxim Pospelov, and Adam Ritz Phys. Rev. D **80**, 095024 – Published 24 November 2009

MiniBooNE experiment at Fermilab

- Designed and built to search for electron-appearance oscillations ($v_{\mu} \rightarrow v_{e}$, $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$) and to study v interactions
- On the Fermilab Booster Neutrino Beamline (BNB)
- 8 GeV protons, ~6E20/yr
- Running recently complete: 2002-2019!
- 800 ton mineral oil Cherenkov detector

11

Dark Matter search with MiniBooNE: experiment

dedicated dark matter run in 2014, with beam Target Decay Pipe **Beam Dump MiniBooNE Detector** steered off neutrino target to reduce neutrino backgrounds by ~x50 p X 2x10²⁰ protons delivered Be Air Steel Bart search for portal dark matter via: X 50 m 487 m $4 \,\mathrm{m}$ $p \rightarrow \text{beam dump} \rightarrow \pi^0/\eta$ $\pi^0/\eta \to \gamma + V \to \gamma + \chi^\dagger + \chi$ 1) $\chi + N \rightarrow \chi + N$ 2) $\chi + N \rightarrow \chi + N^*$ 3) $\chi + e \rightarrow \chi + e$ production detection in three different detection channels neutrino rate event in MiniBooNE: 2002-2018 v/POT × 10⁻¹⁷ $\nu_{\mu} \textit{mode}$ 10² $v/POT = (102.1 \pm 0.1) \times 10^{-17}$ v/POT = (99.7 ± 0.2)× 10 χ^2 /ndf = 840.35/862 χ^2 /ndf = 146.09/171 ν_umode V/POT = (20.79 ± 0.05) × 10-17 10 χ^2 /ndf = 815.44/782 6.27e+20 v POT 2014: 1.13e+21 ▼ POT 1.56e+20 bot POT v/POT = (2.00 ± 0.04) × 10 χ mode 5.27e+20 µB-era v POT χ^2 /ndf = 101.81/97 01/Jan/08 31/Dec/08 31/Dec/09 31/Dec/10 01/Jan/12 31/Dec/12 31/Dec/13 31/Dec/14 01/Jan/16 31/Dec/16 01/Jan/04 31/Dec/04 31/Dec/05 31/Dec/06

Dark Matter search with MiniBooNE: analysis/results

- search for nucleon, electron, π^0 final states
- global on/off target analysis to constrain neutrino flux/backgrounds

- <u>Results:</u> *χ* nucleon elastic channel
 - extends dark matter limits to smaller m_γ
 - excludes a vector mediator solution to g-2 anomaly
 - Phys. Rev. Lett. 118, 221803 (2017).
 - χ -nucleon inelastic, χ -e channels:
 - further extends dark matter limits closer to thermal solution
 - Phys.Rev. D98, 112004 (2018).

٠

Coherent Elastic v-Nucleus Scattering:

"CEvNS": Coherent Elastic v-Nucleus Scattering: $vA \rightarrow vA$

Neutrino scatters with low momentum transfer coherently, elastically from entire nucleus (eg Cs, I, Ar) . For a large nucleus, R_N ~few fm, and:

$$E_{\nu} \lesssim \frac{hc}{R_N} \cong 50 \text{ MeV}$$

Recently discovered (in CsI), 40 years after its prediction...

٦ſ

Coherent Elastic v-Nucleus Scattering:

Physics of CEvNS:

- Supernovae: Expected to be important in core-collapse SN and possible SN detection channel.
- Nuclear Physics: nuclear form factors
- v oscillations: A possible v_s detection channel
- Standard Model tests, eg: $\sin^2 \theta_w$
- Dark Matter: Important background for 10-ton searches

U

<u>Coherent Elastic χ -Nucleus Scattering:</u>

Physics of CEvNS:

- Supernovae: Expected to be important in core-collapse SN and possible SN detection channel.
- Nuclear Physics: nuclear form factors
- v oscillations: A possible v_s detection channel
- Standard Model tests, eg: $\sin^2 \theta_w$
- Dark Matter: Important background for 10-ton searches
- Search for accelerator-produced DM ...

Ш

ψ

<u>Coherent Elastic χ -Nucleus Scattering:</u>

- A Search for sub-GeV dark matter via:
- Portal particles mediating SM and dark matter interactions
- Model consistent with thermal freeze out with low-mass dark matter

Vector portal:
$$\mathcal{L} = \mathcal{L}_{\chi} - \frac{1}{4}V_{\mu\nu}V^{\mu\nu} + \frac{1}{2}m_V^2V_{\mu}V^{\mu} - \frac{\kappa}{2}V^{\mu\nu}F_{\mu\nu}$$

Baryonic portal: $\mathcal{L}_B = \mathcal{L}_{\chi} - \frac{1}{4}V_{\mu\nu}^BV_{\mu\nu}^B + \frac{1}{2}m_B^2V_{\mu}^BV_{\mu}^B + \sum_{N=n,n}i\bar{N}\not\!\!DN$

Light new physics in coherent neutrino-nucleus scattering experiments

Patrick deNiverville,¹ Maxim Pospelov,^{1, 2} and Adam Ritz¹ ¹Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada ²Perimeter Institute for Theoretical Physics, Waterloo, ON N2J 2W9, Canada (Dated: May 2015)

Then, at an intense proton source:

$$p \to \text{target} \to \pi^{0,\pm}, \\ \pi^0 \to \gamma + V \to \gamma + \chi^{\dagger} + \chi, \\ \chi + N \to \chi + N$$

DOI: 10.1103/PhysRevD.92.095005 e-Print: : arXiv:1505.07805 [hep-ph]

COHERENT experiment at ORNL/SNS

- Located in low-background area ("v-alley"), >20m shielding
- near (20-28 m) SNS target with
- 1.4MW, 5000MW/yr, 1.5E23POT/yr,
- pulsed 1GeV proton beam

SNS v energy spectrum

SNS v time distribution

R. Tayloe, fro LDMA 2019

COHERENT experiment at ORNL/SNS

- multiple detectors have/will run to observe CEvNS process:
 - Csl: discovery
 - LAr: currently running, engineering run published, physics results imminent
 - Ge, Nal: coming soon

- scalability and demonstrated low background have focused our efforts on LAr
 - see first limits from engineering run of 27~kg (CENNS-10) detector at: arXiv:1909.05913 [hep-ex]
 - results from current data sample (~140 SM CEvNS events) imminent
- Ton-scale LAr experiment proposed

COHERENT experiment at ORNL/SNS

- multiple detectors have/will run to observe CEvNS process:
 - Csl: discovery
 - LAr: currently running, engineering run published, physics results imminent
 - Ge, Nal: coming soon
- scalability and demonstrated low background have focused our efforts on LAr
 - see first limits from engineering run of 27~kg detector at: arXiv:1909.05913 [hep-ex]
 - results from current data sample (~140 SM CEvNS events) imminent
- Ton-scale LAr experiment, scintillation detector, proposed. Sensitivity studies: arXiv:1911.06422 [hep-ex] Some plots on next pages...

COHERENT LAr search for dark matter

- 750 kg (610 kg fiducial) LAr detector
- 3 yrs at SNS, data driven (CENNS-10) simulations
- CEvNS is largest background but well-constrained with time/energy structure. dark matter all prompt, neutrinos prompt (π⁰-decay) and delayed (μ-decay)

- vector portal: improved constraints for m_χ<80MeV, reaches thermal target for α'<0.1
- baryonic portal: significant improvement for
- m_x<500MeV

ψ

COHERENT LAr search for dark matter

- longer term at SNS after beam/detector upgrades.
- on beam axis for highest sensitivity
- scalar DM excluded for all α '<1 for 5<m $_{\chi}$ <100 MeV

ψ

Coherent Captain-Mills (CCM) experiment at LANL

- Located at LANSCE-Lujan (neutron) facility at Los Alamos Natl Lab
- near (20-40 m) neutron target with
- 80kW pulsed 800 MeV proton beam
- 7 ton (fiducial), existing detector
- shielding under construction
- will exploit prompt signal (before neutrons)

Coherent Captain-Mills (CCM) experiment at LANL

- backgrounds not yet measured
- CCM event sensitivity, 3 years:

ψ

Two detectors for two complementary signatures:

- > Scattering (light dark matter & neutrinos)
- > Decay (visible decays of hidden sector particles)

Focus on the scattering and neutrino detector (SND) today

Oliver Lantwin (Universität Zürich)

LDMA 2019, Venice

Scattering and neutrino detector

Essentially: ECAL with micrometric tracking!

- Combination of nuclear emulsions and SciFi trackers
 - > Similar to OPERA
 - > Reoptimised for SHiP
- > Look for electron recoil signature
 - \rightarrow electron shower

Fully simulated	background	over 5 year	s (2 $ imes$	10 ²⁰	protons	on target):
-----------------	------------	-------------	--------------	------------------	---------	-------------

Background	ν_e	$\bar{\nu}_e$	ν_{μ}	$\bar{\nu}_{\mu}$	all
Elastic Scattering on e^-	81	45	56	35	217
Quasi-elastic Scattering	245	236			481
Resonant Scattering	8	77			85
Deep Inelastic Scattering		14			14
Total	334	372	56	35	797

Irreducible:

> Elastic scattering

$$\ \ \bar{\nu}_e + p \rightarrow e^+ + n$$

 $ightarrow
u_{ au}$, $ar{
u}_{ au}$ background negligible

Reducible:

- > Quasi-elastic: $\nu_e + n \rightarrow e^- + p\!\!\!/$
 - \rightarrow proton energy threshold crucial!

Test beam last month to test the electromagnetic shower identification and energy measurement with emulsion cloud chambers and SciFi \rightarrow sND prototype!

LDM sensitivity

- > Updated since PBC вSM report
- > Signal simulated using MadDump
- ightarrow Including A' production via
 - > Meson decays (including cascade)
 - > Prompt QCD
 - > Drell-Yan
- > Paper in internal review

Use 100 ps time resolution to unambiguously distinguish massive LDM from ~massless u

LDMA 2019, Venice

BSM sensitivities

- Proton beams give access to a variety of production mechanisms and high energies complementary to electon beams and direct detection
- $ightarrow \epsilon^2$ vs. ϵ^4 , but less model dependence
- > Several results and new experiments over the next years!

For more on SHiP, see [SPSC-SR-248] and the forthcoming Comprehesive Design Study Report

Backup

LDM selection

Selection cuts:

- > 1 < E < 20 GeV

Visibility thresholds:

- > protons: 170 MeV
- > other charged particles: 100 MeV

Conservative estimate from OPERA, could be improved by better reconstruction using machine learning techniques.

SHiP hidden sector background studies

Less than 0.1 background events over 5 years — studied with full simulation

Measurement of HNL properties

- > SHiP could do more than just discover HNL:
 - > Are neutrinos Majorana or Dirac?
 - > What is their mass splitting? \rightarrow HNL oscillations!

Details to be published soon: Tastet & Timiryasov [1911.XXXXX]!