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LIGHT DM IN SUPERFLUID-H

Superfluid helium detector

W. Guo, D. McKinsey: 1302.0534

See also, Hertel, Biekert, Lin, Velan, McKinsey, 1810.06283; Maris, Seidel, Stein, PRL2017, 1706.00117



LIGHT DM IN SUPERFLUID-H

van der Waals

quasiparticle free atom binding

vacuum

10s of meV

~10x signal energy enhancement!

QUaS| farTICs N/ AT LEAST O.82 e/ —5 QU
EVA PORAT v~ OF AN He ATom — STick To 1 CALoK. SURKEACK

HELIUM STICKS MORE STronGuy To 4y SURFA CE THAN T
DOesS To |TSELF.



DETECTABILITY OF L

D M

K. Schutz, K.M. Zurek, PRL (2016), 117

IN S.F.H

See also S. Knapen, T. Lin, K.M. Zurek, PRD95 (2017) 056019

Use the microscopic theory of the supertfluid phase of 4He to compute

the two-phonon process. Can probe DM down to KeV.

Sensitivity to DM via a Massive Mediator

---- Analytic

— Numeric




SUPERFLUIDS IN QUANTUM FIELD THEORY



BOSONS WITH SHORT RANGE
REPULSION

In a gas of repelling bosons, giving momentum to a particle
means producing a density wave, which turn out to obey a
linear dispersion relation

(few low energy excitations)



BOSONS WITH SHORT RANGE
REPULSION

A gas of repelling bosons with finite density, can be described
by a QFT (in the NR limit) with a U(1) symmetry

@ — e’y
and a Mexican hat potential well, forcing the maginitude

of ¢ to be close to 4/p

(@ p — p)*

Z=ip'—¢ Vig'Vig = —



BOSONS WITH SHORT RANGE
REPULSION

A gas of repelling bosons with finite density, can be described
by a QFT (in the NR limit) with U(1) symmetry

p — e
and a Mexican hat potential well, forcing the maginitude

of ¢ to be close to 4/p

CGUTTER




BOGOLUBOV FORMULA

Integrate out the # modes in \/,5 = \/ﬁ +7n(<K \/5) and get the Lagrangian

NG

= V.60)°
Alm? 2m( %)

write equations of motion

D
030 — A0 =0

and use the solution (for the Goldstone mode)

O ~ ei(k-X—a)t)



BOGOLUBOV

2602 2 —k2
A )

"Gapless” modes
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GOLDSTON

MODES

Go back to
0,0 »
@90 Dy gy
Alm?2  2m

Scale/adjust the distance x to write the compact form (back to relativistic)
2
(0,0
Al m?

with the constraint

Ox) =0(x)+ 2n



GOL

DSTON

MO

D

=S (A o0)

Z = (0,0 (0"D) — A(P'D — £%)°

Set A to = so that it is (infinitely) more convenient to slide along the

gutter than climbing the wall

L = (0,0N(0"®) with O'® = ¢

the constrain is solved by

O = £e'?

and we get the massless Goldstone modes (like the one obtained before)

L = E%0,0)*

i.e. obtain the NR result by sending 4 - o



PHONON EXCITATIONS

A. Nicolis, 1108.2513 [hep-th]
A. Nicolis, R. Penco, F. Piazza, R. Rattazzi, JHEP (2015)

A. Nicolis, R. Penco, Phys. Rev. B97, 134516 (2018)



PHONONS

Introducing a finite density pbar allows the spontaneous breaking of a global

U(1) symmetry (digs the gutter). The low energy dynamics of a superfluid can
be described in terms of a scalar field 8(x) (that shifts under U(1)).

The phase is the canonical conjugate variable to the density (uncert. relation).
In the ground state of the supertfluid the number of particles <N> is fixed and
the phase 0 is “free” to fluctuate.

|
AO AN ZE

The energy of the system is <H>=p<N>, where y is the chemical potential.
This breaks time translations.



PHONONS

A quantity with the dimensions of a phase, which breaks time translations, is ut;
this can be added to the free O(x) introducing the new phase field

w(x) = (y) +0(x) with (y)=put

The superfluid U(1) is spontaneously broken by the vev.
The phonon arises as the the fluctuation of Y over <@>.

In addition, every condensed matter system breaks Lorentz boosts and defines
a special reference frame: the frame in which the system is at rest.



PHONONS
O(x) x z(x) phonon tield

The most general low-energy action must be Poincare™ and U(1) invariant.

S = | P(X)d*x

y

PX)=P (\/aﬂl//d”y/>

In absence of fluctuations B(x), on the ‘background’,

P(X) = P(u)

where X is a “local” chemical potential, and P(u) is an equation of state.



PHONONS

We will use in place of 0

w(x) = pt + cs\/E_ 7(x)
n

in such a way that z(x) is canonically normalized

Expanding the Lagrangian up to cubic terms in the phonon

L, o 2 1 2 .3
SZH6=57'Z —E(Vﬂ) +A3¢4 [ — 7(Vr)” + Asc, 7T
7l

2
s

S| =

P’ | c
€2 = —— Ay = — ,13:”

P" and n=P’
uP” 2u 671 ()

71 is the background number density and P(u) is the EOS
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Above 1 KeV the dispersion relation is not linear: collective excitations cannot be
described in terms of a phonon dof. The EFT needs higher dimensional operators
and loses its predictive power.



INTERACTION WITH DM:

Consider a scalar dark matter x

L =G #l P+ G (Vo) xIP + &3 2% | x|

| i
2 2
" //t _ " CS _ " ,LtCs
g, =G,m,P"(u) cs\/% ,=-Gm,P ('u)2_ﬁ $,=G,m, P ('M)Z_ﬁ

seagull contribution Aw,q) =



EYNMAN RULES

—?la)

—2i(G30,0, — G5, - Q)

S| =

\GLS (123)




RESULTS WITH 1&2 PHONONS



SINGLE PHONON EMISSION

lts energy is not enough to be detected with calorimetry (need at least 1 meV).
Quantum evaporation (need 0.62 meV) might work — need ballistic trajectories.

The max. energy of a single phonon is ¢, X 2m,v, 2 0.62 meV = m, 2 1 MeV.

dl’ < 0 C, q
= — ol cosl —— — >
dQdow  32rx nmgv, v, n,v,

Cherenkhov cos @ ~ 60°

dw —
dw

J ®Dmax d F

P
N, evts — '[dv;(fMB(V;() z

Mpge N m)( o,

F. Acanfora, A. Esposito, ADP, EPJC 79 (2019), 549



TWO-P

ONON PROC

=5 S

[T
N

Two-phonon emission processes remain effective also at masses

lighter than 1 MeV

(Qualitative argument) The maximum momentum transfer is still 2m,,v

X

but this goes to a virtual (w # c,k) rather than to a real phonon

The off-shell @ gets shared by the two final state phonons

At very low DM masses, one gets

W = W, q, = —q,



TWO-PHONON PROC

=5 S

N ]
2 Ak ch .. ‘
. 4 9% MQ/M//%X%/

2,8’

(0 8, = o 8, 016y — A don By 41 6,
——
M/‘ﬁ/z,’é,)




TWO-PHONONS PROCESS

[T1
N

We focus on two kinds of events.

Those in which both phonons can produce quantum evaporation

w5 > 0.62 meV (w;, <1 meV)

Those in which phonos deposit energy which can be detected with
calorimetric techniques

w+w, 21 meV (w,<1meV)



TH

EXCLUSION PLOT (>1TMEV)

F. Acanfora, A. Esposito, ADP, EPJC 79 (2019), 549

Excluded region corresponding to 3/evts/Kg/year @ zero bckg. Impose total energy released >1meV

2.2
G)( m)(—He

O = 0. =
DM=p = "p = o561




TH

- XCLUSION PLOT

A. Caputo, A. Esposito, ADP, PRD (2019) in press

Excluded region corresponding to 3/evts/Kg/year @ zero bckg. Impose total energy released >1meV



KINEMATICS

F()( — )( + 271') — 1.5 7 d@lzdgzda)l 602 da)z
s(2n)*cymyv, J o4 \/1 — of?
A6,,.0 ) (c0s 0, c0s 0, + —2 c0s 0 — —2 cos 0 of + oy
.0, 0w, ) = cos 0, cos —=Ccos 6, — cos 0., —
E 1272 : 2 Sin 612 Sin 62 12 2 W1 2 CSP 12 ZO)ICSP
L

Region & is defined by || <1

As P — 0 the leading term in & is proportional to

- (q; +q,)
|q; X q5]

The case back-to-back with same momentum prevails at low m, (P — 0)



CUTS FROM DYNAMICS

|q;,] £ 1 KeV

(w1, < 1 meV can be seen only in evaporation)

[q] = |q; + gy < 1 KeV

<|q| =|P—P’| Z\/PZ-I—P/Z—ZPP'COSﬂ)

The bound on momenta coming determine the EFT

l l
A = -
— C2q 20)1602(1 — COS 912)

The lower cuts on the the phonons energies "cure’ the collinear divergence

w5 > 0.62 meV (w;, <1 meV)
or
v +w, 21 meV (w,<1meV)



A LITTLE THEOREM"

A. Caputo, A. Esposito, ADP, PRD (2019) in press

M, = —2(G30,0, — G,(q; - Q)

a

|
ﬂb=(§1a)>< 2_62(1 X2

<}t3(a)1q2 q+ 210)+(012))+32 0 a)la)z)

‘ (129) l

=

In the back-to-back limit ¢ —» 0, .#_, and the last two terms in ., cancel!

Myt My~ o

The best proof is numerical. More arguments can be crafted.



THE EXCLUSION PLOT

A. Caputo, A. Esposito, ADP, PRD (2019) in press

Excluded region corresponding to 3/evts/Kg/year @ zero bckg. Impose total energy released >1meV

2.2
G)( m)(—He

2567

UDM_p — Gp —



DISTRIBUTIONS

F. Acanfora, A. Esposito, ADP, EPJC 79 (2019), 549

A. Caputo, A. Esposito, ADP, PRD (2019) in press

~
0
=
-
-
)
| -
e
O
)
~

dw
dCos (612)




A FEW REMARKS

We can reproduce the Shutz&Zurek exclusion plot using only phonon excitations.

We conclude that rotons have marginal role.

We can compute distributions, e.g. in the relative angle between the two
phonons. This might be of relevance in future experimental studies.

The KeV-MeV mass range exclusion plot (large suppression wrt pure phase-space)
can be understood in terms of the cancellation between two contributions to the
scattering amplitude. The DM coupling to two phonons is O(g?/w?).

What about processes 2 + (1-soft phonon) emission in the final state? ...

We have a method which can be used successtully to solve a a whole class of
problems where phonons are the relevant degrees of freedom.



BACKUP SLIDES



MICROSCOPIC THEORY

p2

2mS(p)

e(p) =

S(p) is the Fourier component of S(r — r’)

(n(r) — n)(n(r’) —n)

n

S(r—r) =

|
n(r) = —p(r)
m

A
S(p) = —— | 6,_po(@) dov
27 |

where w is the energy transfer due to scattering with neutrons



GOLDSTONE MODES

The hard-core repulsion between bosons is such that a boson moving with

momentum k will affect all other bosons producing a density wave with energy w
oroportional to k as in the Bogolubov formula (linear dispersion relation).

The number density of final states per unit energy interval is

dn T1d°p 1
pE) =——= ?

— & p .0 if E—0
dE ~  dE dE/dp

Compare the quadratic dispersion case with linear dispersion case at very low energy:
paucity of gapless excitation.

"The physics of supertluids lies in the paucity of
gapless excitations”



SYST

[ 1]
<
O
0

-PELLING BOSONS

¢ =/pe”

z=L2 09 (V9)2+1(V )? e
20l T o T am \N T T i T a

1) the phase @ and the density p are conjugate

2) Turn to the Hamiltonian: higher densities
correspond to higher energies (it lambda>0).
This means that there is an hard core repulsion
between bosons — the condition to have

a supertfluid at T=0.



INTERACTION WITH DM: MICR.

2 T Y 2
L= 11"+ m 21"+ 500)"+ Zd" + gm @y | +8ud 1

On the supertluid background the n aquires a vev 7




INTERACTION WITH DM: MICR.

The effective & is obtained by promoting u - X
m?(X) = m)? - G, m, P'(X)
and finally expanding &, in the fluctuations
L= 10g "+ m* 0 1 x|°
(Z,=1 here)
Besides &, = me%|)(|2n(x) we also tested

Toy __ 2 —1—
Z 7 =Gm,| x| n*(x)n" "

with a = 1,1.1,---



