Light dark matter, dark sector EFT and long-lived states

Luc Darmé

 $\mathsf{INFN} - \mathsf{LNF}$

20/11/2019

Based on 1807.10314 and 1912.xxxx

Outline

Introduction: Long-lived states in light dark matter models and EFT description

Production of light dark sector at the intensity frontier and EFT

Signatures of light dark sectors and limits

Introduction Long-lived states, dark sectors and EFT

Complete models of light thermal DM

 Strong experimental effort towards light DM (sub-GeV) in recent years

→ Complemented by theoretical developments toward building models of thermal sub-GeV DM

- Dark matter is bundled with a dark sector, with potentially many particles in it
 - Required to obtain the proper relic density (while avoiding CMB limits)
 - Implied from top-down approach (e.g anomaly cancellations, Higgs mechanism for dark photon mass, etc...)

iDM hep-ph/0101138, ... Secluded DM Semi-annihilating DM 0711.4866, 1003.5912, ... Boosted DM 1405.7370, 1503.02669... Selfish DM Forbidden DM 1504.00361,... Griest-Seckel, 1505.07107, ... Co-decaying DM 1607.03110, ... Impeded DM 1609.02147,...

...and many more recent

A key consequence: long-lived particles

 SM_{\sim}

SM

SM

SM

H

 χ_2

 SM_{\star}

SM

- Decays involving SM particles are often the only option for unstable dark sector states
 - Through the portal -> e.g. dark Higgs boson, dark photon $(10-5)^2$ (M

$$c\tau_{V\to e^+e^-} \sim 1 \text{ cm} \times \left(\frac{10^{-5}}{\varepsilon}\right)^2 \left(\frac{M_V}{100 \text{ MeV}}\right)$$

- Mixed visible/dark decays are also often relevant. (see F. D'Eramo talk)
 - Here: dark sector decays which proceed through off-shell mediator → e.g semi-visible 3-body decays (iDM, certain sterile neutrino models, etc....)

$$c\tau_{\chi_2} \propto 100 \text{ m } \times \left(\frac{0.1}{\alpha_D}\right) \left(\frac{10^{-3}}{\varepsilon}\right)^2 \left(\frac{0.2M_{\chi}}{\Delta_{\chi}}\right)^5 \left(\frac{25 \text{ MeV}}{M_{\chi}}\right)^5 \left(\frac{M_V}{100 \text{ MeV}}\right)^4$$

• Basic equivalence with a dark photon model with kinetic mixing ε and coupling g_D :

$$\frac{\Lambda}{\sqrt{g}} \sim \frac{M_V}{\sqrt{\varepsilon g_D e}}$$

Could probe scale 2 to 3 orders of magnitudes larger than χ

Light dark sector EFT and the intensity frontier

Production at accelerator-based experiments

Dark Sector searches - production

- Light dark sector particles may be accessible at the *intensity frontier*
 - Since typically $\Lambda > E_{cm}$, EFT description of off-shell production well-defined

Precision experiments at collider (e.g BaBaR, BELLE...)

Beam-dump/fixed-target types of experiments (LSND, CHARM...)

Production in the light dark sector EFT

Production is strongly modified w.r.t the on-shell mediator production

- Off-shell nature of the process -> Strong suppression of low energy production mechanism.
 - → For meson decay, BR typically suppressed $\propto \frac{M_m^4}{\Lambda^4}$
- On-shell mediator bremsstrahlung $e^-N \rightarrow e^-N V$ or $p N \rightarrow p N V$ not available

→ Electron beam-dump production suppressed

- When available, direct production more relevant since higher c.o.m energy compared to Λ

Depending on the nature of the operators, different production channels from meson decay

Full production – vector coupling

- Main exp. properties
 - LSND: ~ 10^{23} PoT and 0.8 GeV beam
 - CHARM: $\sim 10^{18}$ PoT and 400 GeV beam
- Strong differences with dark photon case
- Meson decay allowed for VV operator:

 $\begin{array}{l} \pi^0, \eta, \eta' \to \gamma \chi \chi \\ \rho, \omega \to \chi \chi \end{array}$

Full production – axial vector

LD, S. Ellis, T. You, 1912.xxxx

 Meson production strongly enhanced

> 2-body decays dominant

 $\pi^0,\eta,\eta'\to\chi\chi$

 Pion decay contribute significantly

Dark sector searches and constraints

Recasting and limits using the EFT approach

Dark Sector searches in the lab

- Missing energy/ Invisible decay: Monophoton/mono-jet searches missing energy signature @ BaBar, Belle, NA64, LEP, LHC.
- Dark sector beam production and detection
 - Scattering: Searching for DM via scattering (E137,LSND, miniBooNE ...)
 - Dark sector visible decay: (LNSD, CHARM, Seaquest, FASER, etc...)
- Invisible meson decay: for instance $\pi^0 \rightarrow \bar{\chi}\chi$ (E949)
 - Important for flavour-violating operators

Recasting in the light EFT approach

Most existing limits are obtained for vanilla cases (e.g iDM, pure dark photon ...) \rightarrow need to recast these searches as function of the EFT

 Different approaches for each search strategies → Decay limits are particularly challenging

 \rightarrow need to rescale for production rates

$$\Lambda_{\rm lim} = 410 \,\,{\rm GeV} \times \sqrt{g_{\rm eff}} \left(\frac{0.001}{\varepsilon}\right)^{1/2} \left(\frac{\mathcal{N}_{\rm prod}^{\rm eff}}{\mathcal{N}_{\rm prod}^{\rm DP}}\right)^{1/8}$$

→For different splitting, detection probability is modified (also rescale for decay rates)

 Mono—photon searches are also weakened since no "bump-search" can be performed

Limits in the vector case

Include limits/projections:

→Mono-photon: LEP, BaBar and Belle II

→Decay searches at saturation ($M_2 \gg M_1$) at LSND, CHARM, SeaQuest (hypothetical Phase 2 with ~ 10¹⁸ PoT) and SHIP

→SN1987 cooling limits, but strong model dependence, especially in the lower bounds (dark sector trapping)

Varying the splitting

- Decay signatures depends strongly on splitting $M_2 - M_1$
 - Lifetime scales as $(M_2 M_1)^5$
 - Then reach saturation for $M_2 \gg M_1$
- Both upper limits and lower limits are modified
 - Long-lived limit -> linear suppression
 - Short-lived limit ->exponential dependence

Limits in the axial-vector case

 Mesons production strongly enhanced

→Better low-mass limits

- LSND (0.8 GeV beam) probes up to 1 TeV
- SN1987 based on invisible π^0 decay

Conclusion

Conclusion

- Light thermal dark matter models typically include a dark sector with long-lived particles -> Important search targets for intensity frontier experiments
- When the mediator is too heavy to be produced directly, describe the phenomenology as an "off-shell" fermion portal -> EFT description
- Lead to rich phenomenology in intensity frontier experiments, with different prospects than standard "on-shell" portals

→ Will be release in a python package, to provide recasted limits for any effective coupling

Backup slides

Decay rate of heavy state

• The decay rate depends on the possible decay channel \rightarrow depends on the operator type

Astrophysical limits

- For $M_2 \gg M_1$, the lightest dark sector can be relativistic relic
- One can still obtain dark matter candidate for iDM setup for masses around the GeV

$$\Omega h^2 \sim 0.3 \times \left(\frac{2 \text{ GeV}}{M_{\chi}}\right)^2 \left(\frac{\Lambda/\sqrt{g}}{500 \text{ GeV}}\right)^4$$

• Additional dynamics in the hidden sector may fix the relic density, e.g. $\chi_1 \overline{\chi}_1 \rightarrow SS$ of iDM with a dark Higgs boson

Looking forward ...

- Many upcoming relevant experiments:
 - Neutrino experiments -> the near detectors can search for dark sector particles
 - Dark sector-oriented -> looking for decays/ missing energy
 - Flavour/ Rare mesons decay -> Missing energy searches, invisible meson decay, etc...

(Many missing, not all of them are funded yet...)

EFT limitation at LEP and LHC

• EFT not applicable if roughly the c.o.m energy of the process higher than the scale → significantly discussed for dark matter at LHC

Practical example: dark photon

LD, S. Ellis, T. You, 1912.xxxx

- Standard iDM scenario with a heavy dark photon ($M_V \sim 30$ GeV, with $M_V \gg M_{\chi}$)
- Very weak limits from Babar (no resonance search available)
- Relic density through e.g. $\chi_1 \overline{\chi}_1 \rightarrow SS$ dark Higgs boson

Fermion dark matter example

$$\mathcal{L}_{pDF}^{\mathrm{DM}} = \bar{\chi} \left(i \not \!\!\!D - m_{\chi} \right) \chi + y_{SL} S \bar{\chi}^c P_L \chi + y_{SR} S \bar{\chi}^c P_R \chi_{\perp} + \mathrm{h.c.}$$

• Yukawa couplings to the dark Higgs S

 \rightarrow Avoid Dirac DM (CMB exclusion)

 \rightarrow After $U(1)_D$ symmetry breaking, the dark matter acquires a Majorana mass

$$M_{\chi} = \begin{pmatrix} \sqrt{2}v_S y_{SL} & m_{\chi} \\ m_{\chi} & \sqrt{2}v_S y_{SR} \end{pmatrix}$$

$$M_V = g_{\alpha_D} q_S v_S - V$$

$$M_S = \sqrt{2\lambda_S} v_S - S$$

$$M_{\chi_2} - M_{\chi_1} = \sqrt{2}v_S(y_{SR} + y_{SL}) \downarrow \qquad \chi_1$$

After diagonalization → two Majorana fermions

Typical regimes with correct relic density

SN 1987A bounds

 Typical bounds arise when DM do not scatter enough and escape the SN core

 $\alpha_D \epsilon^2 < O(\text{few}) \times 10^{-14}$

- Not relevant for pseudo-Dirac case/Majorana case at the thermal target
- Dark Higgs bounds may be relevant at $m_S < M_{\chi_1}$ or $m_S < M_{\chi_2} M_{\chi_1}$

→ But scattering with DM halo inside the SN should be enough to trap it

