

Beyond the Standard Halo Model

Christopher M^cCabe

Together with Ciaran O'Hare, Wyn Evans, G. Myeong and V. Belokurov Based around arXiv:1807.09004 (PRD), 1810.11468 (PRD), 1909.04684

Light Dark Matter - Venice - 20th November 2019

Motivation

'Traditional' direct detection experiments

XENON1T, PRL, arXiv:1805.12562

Lower mass searches lose discrimination

SuperCDMS, PRL arXiv:1804.10697

Need to ensure the signal model is accurate

Generic direct detection experiment

Need to accurately model the DM flux to accurately predict signals

The Standard approach

Standard Halo Model

Simple spherical model with (asymptotically) flat rotation curve

$$f(\mathbf{v}) = \begin{cases} \frac{1}{N_{\text{esc}}} \left(\frac{3}{2\pi\sigma_v^2}\right)^{3/2} e^{-3\mathbf{v}^2/2\sigma_v^2} & : |\mathbf{v}| < v_{\text{esc}} \\ 0 & : \text{otherwise} \end{cases}$$

Assumptions:

- Round halo
- Gaussian (Maxwellian)
- Isotropic
- No substructure

Standard Halo Model

Simple spherical model with (asymptotically) flat rotation curve

$$f(\mathbf{v}) = \begin{cases} \frac{1}{N_{\text{esc}}} \left(\frac{3}{2\pi\sigma_v^2}\right)^{3/2} e^{-3\mathbf{v}^2/2\sigma_v^2} & : |\mathbf{v}| < v_{\text{esc}} \\ 0 & : \text{otherwise} \end{cases}$$

Advantages:

- Simple
- Only 2 parameters
- Accurate(?)

Gaussian form agrees well with simulated galaxies

Green and magenta data points: *Milky Way-like* simulated halos Lines: Standard Halo Model - *Agreement is reasonably good!*

Is our galaxy similar to a 'Milky Way-like' simulated halo?

Gaia: a new era in mapping the Milky Way

Launched 2013 Operates until ~2022

7 millions stars with full6D phase space (x,v)

20 kpc Post-Gaia horizon (1 km/s proper motions)

200 pc pre-Gaia horizon

Sun

Galactic centre

Image from Ciaran O'Hare

Meatballs and Sausages in velocity space

Gaia data contains a Sausage

Gaia data contains a Sausage

O'Hare, Evans, CM et al arXiv:1909.04684

@ low metallicity: 'Meatballs'

Extreme radial anisotropy arises from head-on collision

Sausage galaxy brought dark matter too... ...will also be on highly radial orbit

Modelling the Gaia Sausage dark matter

O'Hare, Evans, CM, arXiv:1810.11468, PRD

SHM++: 2 component model

Sausage leads to modest changes

Gaia Sausage is Beyond the Standard Halo Model...

...but generally leads to modest changes in experimental signals

Going further beyond the SHM

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS **475**, 1537–1548 (2018) Advance Access publication 2017 December 20 doi:10.1093/mnras/stx3262

Halo substructure in the SDSS-Gaia catalogue: streams and clumps

G. C. Myeong,¹ N. W. Evans,¹ V. Belokurov,¹ N. C. Amorisco^{2,3} and S. E. Koposov^{1,4}

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY MNRAS **478,** 5449–5459 (2018)

doi:10.1093/mnras/sty1403

Discovery of new retrograde substructures: the shards of ω Centauri?

G. C. Myeong, ¹ N. W. Evans, ¹ V. Belokurov, ¹ J. L. Sanders¹ and S. E. Koposov^{1,2} ¹Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 OHA, UK ²McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY MNRAS 488, 1235–1247 (2019) Advance Access publication 2019 July 1 doi:10.1093/mnras/stz1770

Evidence for two early accretion events that built the Milky Way stellar halo

G. C. Myeong[®],¹* E. Vasiliev[®],^{1,2} G. Iorio[®],¹ N. W. Evans¹* and V. Belokurov^{®1}

¹Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK ²Lebedev Physical Institute, Leninsky Prospekt 53, Moscow 119991, Russia

Finding local structure 'Shards' in action space

SI and S2 are the most interesting for terrestrial experiments

More general substructure: 'Dark Shards'

O'Hare, Evans, CM et al arXiv:1909.04684

More general substructure: 'Dark Shards'

Directional signals: hotspots away from Cygnus

Directional signals: hotspots away from Cygnus

SI: 'Dark matter hurricane'

O'Hare, CM et al. 1807.09004 A dark matter hurricane...

Small effect for high mass searches

Spectrum is relatively featureless...

... except in a sweet spot around 20 GeV

Axion haloscopes: precision astronomy?

Modulation signals: peak day changes

Summary

- Robust particle physics constraints/measurements requires robust halo model
- Gaia has opened a new era in understanding the Milky Way
- We have investigated the impact on nuclear recoils and axion haloscopes of
 the Gaia Sausage (modest)

 \star the SI, S2 streams and other substructure (more dramatic)

Next:

- work with simulations to refine properties
- investigate properties on wider range of experiments

Thanks

Axion power spectrum: SI and S2 leave distinctive features

SHM++: 2 component model

O'Hare, Evans, CM, arXiv:1810.11468, PRD

	Local DM density	$ ho_0$	$0.3{ m GeVcm^{-3}}$
	Circular rotation speed	v_0	220 km s^{-1}
\mathbf{SHM}	Escape speed	$v_{\rm esc}$	544 km s^{-1}
	Velocity distribution	$f_{ m R}({f v})$	Eq. (1)
\mathbf{SHM}^{++}	Local DM density	$ ho_0$	$0.55 \pm 0.17 \text{ GeV cm}^{-3}$
	Circular rotation speed	v_0	$233 \pm 3 \text{ km s}^{-1}$
	Escape speed	$v_{\rm esc}$	$528^{+24}_{-25} \text{ km s}^{-1}$
	Sausage anisotropy	eta	0.9 ± 0.05
	Sausage fraction	η	0.2 ± 0.1
	Velocity distribution	$f(\mathbf{v})$	Eq. (3)

 $\eta\,$ here is consistent with values in simulations $\beta\,$ takes same values as stars in Sausage sample

Necib et al 1810.12301 Fattahi et al 1810.07779

Gaia Sausage or Gaia Enceladus?

Article	Talk	Read	Edit	View history	Search Wikipedia	Q

Gaia Sausage

From Wikipedia, the free encyclopedia

The **Gaia Sausage** is the remains of a dwarf galaxy, the "Sausage Galaxy" or **Gaia-Enceladus-Sausage** or just **Gaia-Enceladus**, that merged with the Milky Way about 8 - 11 billion years ago. At least eight globular clusters were added to the Milky Way along with 50 billion solar masses of stars, gas and dark matter.^[1] The "Gaia Sausage" is so-called because of the characteristic sausage shape of the population in velocity space, the appearance on a plot of radial versus azimuthal and vertical velocities of stars measured in the Gaia Mission.^[1] The stars that have merged with the Milky Way have orbits that are highly radial. The outermost points of their orbits are around 20 kiloparsecs from the galactic centre at what is called the halo break.^[2]

SI stellar stream

SI: Identified with SDSS-Gaia (DRI) Catalogue94 member starsG. Myeong et al. 1712.04071

Passes very close to solar position (orange arrow)

S1 Stream

SI stream: very fast moving DM subcomponent

Sun

ADMX: precision astronomy

Could measure properties of SI dark matter component eg. velocity dispersion

Height of feature depends on SI density and velocity dispersion

More general substructure

O'Hare, Evans, CM et al arXiv:1909.04684

Impact on the nuclear recoil spectrum is always small

Modulation signals: amplitude changes

Directional signals: hotspots away from Cygnus

Directional signals: hotspots away from Cygnus

