THE GAMMA FROM NUCLEAR DECAYS HIDING FROM INVESTIGATORS (GANDHI) EXPERIMENT

Harikrishnan Ramani BCTP, Berkeley

GANDHI- arxiv:1810.06467 with Giovanni Benato, Alexey Drobizhev, Surjeet Rajendran

DARK FORCES LANDSCAPE

Hidden-sector Dark Matter: Anomalies, Production Mechanisms, and Detection Strategies

Cosmic Visions: 2017

LIGHT DARK BOSONS

- ➤ Help shockwaves trigger Type II supernovae
- ➤ Relaxion models
- ➤ Dark matter
- ➤ Or mediate light DM SM interactions
- ➤ Light DM Direct Detection, mediator cannot be too heavy; x-section drops precipitously.
- ➤ Opportunity to constrain the mediator itself.

LIGHT DARK FORCES - STATUS

➤ NA64, BDX, LDMX etc are proposed to look for forces coupled to electrons

Source:LDMX

➤ Nucleophilic forces are harder to constrain.

STATUS OF NUCLEOPHILIC FORCES - SCALAR MODEL

Source:1709.07882, Knapen, Lin, Zurek

*one degree of freedom is in 2 sigma tension with BBN

STATUS OF NUCLEOPHILIC FORCES - SCALAR MODEL

Source:1709.07882, Knapen, Lin, Zurek

*one degree of freedom is in 2 sigma tension with BBN

LOOPHOLES TO BUILD DM MODELS...

$$\mathcal{L} \supset -\frac{1}{2}m_{\chi}^2\chi^2 - \frac{1}{2}m_{\phi}^2\phi^2 - \frac{1}{2}y_{\chi}m_{\chi}\phi\chi^2 - y_n\phi\overline{n}n$$

Source:1709.07882, Knapen, Lin, Zurek

For direct probes of this parameter space: Rouven's talk

COULD WE DO BETTER?

MET

- > missing energy experiments stay agnostic to decay modes
- ➤ furthermore, pay small factor only once
- ➤ how do we do this for a baryonic force? doing MET search for baryons is a messy enterprise.

MET

- > missing energy experiments stay agnostic to decay modes
- ➤ furthermore, pay small factor only once
- ➤ how do we do this for a baryonic force? doing MET search for baryons is a messy enterprise.
- ➤ (Missing) Gamma Decays

THE GAMMAS FROM NUCLEAR DECAYS HIDING FROM INVESTIGATORS (GANDHI) EXPERIMENT

NUCLEAR PHYSICS FOR PEACE

THE GAMMAS FROM NUCLEAR DECAYS HIDING FROM INVESTIGATORS (GANDHI) EXPERIMENT

NUCLEAR PHYSICS FOR PEACE

WHAT IS THE LARGE NUMBER?

- ➤ Need for large statistics. typically EOT in a beam-type exp.
- ➤ Avogadro number of decaying nuclei is a naturally large number
- ➤ Can we do nuclear gamma decays and look for MET?

ISOTOPE SELECTION

- ➤ Isotopes which are long-lived, high energy gamma emitters.
- ➤ Decay sequence that is trigger-able
- ➤ Industrial production is a plus.
- ➤ Candidates: ⁶⁰Co, ²⁴Na, ⁶⁵Ni.

SIGNAL

- ➤ Cobalt foil inside a hermetically sealed detector
- ➤ Trigger on beta+first gamma
- Signal event is a beta+first gamma+missing subsequent second gamma

PHOTON DETECTION - SCINTILLATORS

- ➤ Photon detection with minimum dead-time
- ➤ Energy resolution, very important.
- ➤ Intrinsic Radioactivity needs to be kept low
- ➤ Large detector volumes for containment
- ➤ Plastic Scintillators are ideal choice BC-404
- ➤ Large stack of crystal scintillators works too
- ➤ A Hybrid solid scintillator core + liquid scintillator body might work also. Borexino?
- Minimal dead regions/cracks, hermeticity.

DETECTOR SCHEME

- ➤ Hermetic Detector divided into 3 modules
- ➤ Central modules to completely stop betas ~ cm
- ➤ Inner module to detect majority of the gammas ~ 10cm. Require detection of first gamma here
- ➤ Outer module depending on the efficiency required.

1.33 MEV GAMMA MIMICKING 1.17 MEV GAMMA

Mixing angle

- ➤ As statistics increase, need tighter cuts to differentiate tails
- ➤ Soft Compton could also cause similar background
- ➤ Dead Regions: typical size too small to cause similar effect
- \blacktriangleright Happens mainly because $E_2 \gt E_1$
- ➤ ²⁴Na does not suffer from this....

RADIOGENICS

- ➤ For ⁶⁰Co, dominant background from ⁴⁰K contaminant
- Occurs through EC
- ➤ Gamma can soft scatter in central module + rescatter in inner module
- ➤ Total run-time dependent, higher event rate ameliorates
- ➤ Tighter cuts in beta deposition helps too.

COSMOGENICS

- ➤ Cosmic Rays / neutrons scatter first in the outer volumes.
- ➤ Requiring central → inner → outer module energy deposition mitigates.
- ➤ Neutrinos could cause inelastic scatter + subsequent gamma radiation
- ➤ Low for a 1 year run.

TOY MODEL

$$\mathcal{L} = g_p \phi \bar{p} p$$

For an E_2 transition,

$$H_{\rm int}^{\phi} = g_p R_p^i R_p^j \nabla_i \nabla_j \phi(k)$$

$$H_{\rm int}^{\gamma} = eR_p^i R_p^j \nabla_i \epsilon_j$$

Invisible branching fraction:

$$\frac{\Gamma(\phi)}{\Gamma_{\gamma,E_2}} \sim \frac{1}{2} \left(\frac{g_p}{e}\right)^2 \left(1 - \frac{m_\phi^2}{\omega^2}\right)^{\frac{5}{2}}$$

REACH

Source for existing limits: Knapen et al. and Y.-S. Liu, D. McKeen, and G. A. Miller ,1605.04612

INDIRECT LIMITS ON LIGHT DARK MATTER MODELS

PSEUDO-SCALAR

- \triangleright With 10^{14} decays of 24 Na.
- ➤ Could do better with ⁶⁵Ni which has M₁ transition

SPIN-DEPENDENT DM

- ➤ Direct Detection very hard: velocity suppression
- ➤ Indirect limits from mediators:

OTHER ISOTOPE CANDIDATES

⁴⁶Sc, ¹²⁴Sb, ⁴⁸V, ¹⁵⁴Eu, ²⁰⁷Bi and finally ⁴⁸Sc

CONCLUSIONS

- ➤ Difficulty with NA64/LDMX type searches for nuclear forces
- ➤ Can be looked for in high statistics gamma decay
- ➤ Could constrain light dark matter direct detection parameter space without ambiguities of local DM densities and velocities.