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Axion-like particles (ALPs)

• pNBG boson:  
spontaneous U(1) breaking scale fa („PQ-scale“) 
expl. U(1) breaking at Λ by exotic non-pert. effects 
 

• parametrize temperature dependence  

• QCD axion for:

2

particular, we will focus on constraints based on Planck data [5, 52] and provide forecasts
for next-generation CMB (e.g., stage-IV/PRISM) [references] and HI intensity mapping
experiments such as the Square Kilometre Array (SKA) [53–55].

This work is structured as follows TSM: to be edited : in section 2, we introduce
our model for ALP DM in the context of post-inflationary PQ breaking. Assuming that
ALPs are mainly produced through the vacuum realignment mechanism, we present estimates
of the cosmological relic abundance as well as the initial power spectrum of isocurvature
fluctuations. The latter’s e↵ect on CMB anisotropies and the matter power spectrum is
discussed in section 3, and then used to constrain the model’s parameter space and to derive
strong limits on ULA DM based on current and future large-scale datasets. We conclude and
summarize our findings in section 5.

2 ALPs in the post-inflationary symmetry breaking scenario

In what follows, we consider the cosmological evolution of ALP fields in the post-inflationary
PQ breaking scenario. Building on semi-analytical results obtained for the QCD axion in [34],
we adopt the harmonic approximation for the potential and focus on the vacuum realignment
mechanism which constitutes a largely model-independent way of producing relic axions in
the early Universe [21–24, 56].

A key di↵erence between QCD axions and ALPs is that the latter do not necessarily
exhibit a specific relation between mass, ma, and breaking scale, fa. Assuming that a po-
tential for the ALP field a is generated by some exotic strongly interacting sector, we may
write
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where, in analogy to the instanton potential of QCD axions, ⇤4 takes the role of a topological
susceptibility � that is generally model-dependent and will be parametrized below. Hence,
the ALP is characterized by two out of the three parameters fa, ma and ⇤.

A crucial ingredient for the cosmological evolution of ALPs is the temperature depen-
dence of its mass. While for the QCD axion this is fully determined by non-perturbative
QCD e↵ects [see e.g., 57, 58], for general ALPs this is model-dependent and depends on
the specifics of the mechanism generating the mass for the ALP. In the following we will
assume a power law that turns into the constant zero-temperature mass ma = ⇤2

/fa for low
temperatures,
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The parameter b accounts for the possibility that the zero-temperature mass might not exactly
be reached at T = ⇤ but at

T0 = b
1/n⇤ . (2.3)

We will consider values in the range b ' 0.1–10. The parameter n 2 R+ controls how quickly
the mass emerges. Choosing ⇤ = 75.5 MeV, b = 10, n = 4, eq. (2.2) reproduce to good
accuracy the ma(T ) behaviour for the QCD axion as obtained in [57].
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Introduction Axion cosmology

◊̈k + 3H(T )◊̇k + Ê2◊k = 0 Ê2 = k
2

a2 + m(T )2

I modes outside the horizon 3H(T ) > Ê:
over-damped oscillator, field frozen: ◊k = const

I modes inside the horizon 3H(T ) < Ê:
oscillator with frequency Ê, amplitude decays with expansion
relativistic modes are red shifted relative to non-relativistic modes
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Cosmological evolution

• initial conditions depend 
crucially on PQ-symmetry 
breaking happening during or 
after inflation  

small field values → harmonic approx for potential: V (✓, T ) ⇡ 1

2
m2(T )✓2
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• density contrast in component i = DM, b, γ 

• decompose DM fluctuations

• adiabatic and isocurvature fluctuations evolve differently

• constraints from CMB on isocurvature component  
( < few % at CMB scales)

Adiabatic vs isocurvature fluctuations
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pre-inflationary case
• PQ symmetry gets broken during inflation

• inflaton and axion are present simultaneously → 
generation of isocurvature fluctuations 
e.g. Turner Wilczek, 91; Lyth, 92
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FIG. 1: Region of axion parameter space where the axion is 100% of the cold dark matter. The

axion mass scale on the right corresponds to Eq. (2) with U(1)PQ color anomaly N = 1. When

the PQ symmetry breaks after inflation (fa < HI/2π), the axion is the CDM particle if fa =

(7.27 ± 0.25) × 1010 GeV, or ma = (85 ± 3) µeV, which is the narrow horizontal window shown

on the right (we plot a 3σ window to make it visible). If the axion is present during inflation

(fa > HI/2π), axion isocurvature perturbations constrain the parameter space to the region on

the top left, which is marked by the values of θi necessary to obtain 100% of the CDM density.

Other bounds indicated in the figure come from astrophysical observations of white dwarfs cooling

times and the non-observation of tensor modes in the Cosmic Microwave Background fluctuations.

Dashed lines and arrows indicate the future reach of the PLANCK satellite and the ADMX and

CARRACK microwave cavity searches.

energy scale of [30]

fa > 4 × 108GeV. (42)

Assuming N = 1 in Eq. (2), this corresponds to ma < 15 meV.

The line

fa = TGH = HI/2π (43)

Gondolo, Visinelli, 
0903.4377
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This talk: post-inflationary scenario

• ALP field takes random values in causally 
disconnected regions

• random values of periodic field → 
cosmic strings 

• Kibble mechanism:  
`scaling´ of string network: roughly one 
string per Hubble volume during 
expansion of Universe

• Before onset of field oscillations remains 
~ one string per Hubble volume and 
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value of any quantity Y (✓) is given by hY i =

R
d✓ f(✓)Y (✓). In particular, it implies for

the mean and the variance:

h✓(~x)i = 0 , h✓(~x)2i = ⇡
2
/3 . (3.1)

Let us now consider the Fourier transform

✓k =

Z

V

d
3
x ✓(~x)ei

~k~x
, ✓(~x) =

1

(2⇡)3

Z
d
3
k ✓ke

�i~k~x
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The integral over d3x is taken over a large volume V , such that the integral is finite, and

~x and ~k are co-moving coordinate and momentum, respectively. We have h✓ki = 0, and

✓�k = ✓
⇤
k
since ✓(~x) is real. Due to statistical homogeneity and isotropy the correlation

function in Fourier space can be written as

h✓k✓⇤k0i = (2⇡)3 �3(~k � ~k
0)P✓(k) , (3.3)

where P✓(k) denotes the power spectrum for the field, which is the Fourier transform of

the 2-point correlation function ⇠(|~r|) = h✓(~x)✓(~x+ ~r)i. We follow the conventions for the

power spectrum of Ref. [26].

We can now use the shape of the power spectrum to implement that causally discon-

nected regions should be uncorrelated. Let us introduce a characteristic wave number

K = aiHi , (3.4)

where ai is the scale factor at our initial time ti and Hi is the Hubble rate at that time.

The axion field should be uncorrelated at co-moving distances larger than 1/K. Note that

there is an ambiguity in this definition. Alternatively we could use the association of wave

number and co-moving distance as k = ⇡/R, which would lead to an additional factor ⇡ in

eq. (3.4) for R = 1/(aiHi). In general, K is defined only up to factors of order one, which

unfortunately introduces a large uncertainty, since K enters in many quantities of interest

with third power.

The normalization of the power spectrum is fixed by requiring h✓(~x)2i = ⇡
2
/3 according

to eq. (3.1). The shape of the power spectrum should be determined by the evolution of

the field from the PQ scale down to the QCD scale. In absence of a full simulation over so

many orders of magnitude, we are forced to make some (physically motivated) guesses. A

reasonable assumption seems to be a white noise (i.e., flat) power spectrum with a sharp

cut-o↵ at co-moving wave number K (“top-hat”):

P
TH

✓
(k) =

2⇡4

K3
⇥(K � k) . (3.5)

This means that fluctuations for each mode up to K are equally likely. However, the

finite cut-o↵ leads to an oscillating two-point correlation function ⇠(r) which decreases

only with the inverse of the distance-squared, and hence, implies long-range correlations in

to unphysical implications of the zero mode.

– 5 –

Klaer, Moore, 1708.07521; Gorghetto, Hardy, Villadoro, 1806.04677
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Initial condition

• axion field smooth on scales < horizon  
uncorrelated on scales > horizon

• assume power spectrum for axion field w Gaussian cut-off

7

configuration space beyond the horizon. Therefore we consider as alternative a Gaussian

suppression of high wave numbers:

P
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8⇡4
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p
⇡K3
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� k

2

K2

◆
, (3.6)

which leads to exponential suppression of correlations also in configuration space. There-

fore, the Gaussian power spectrum seems to be physically better motivated and we adopt

it as our default assumption. We will, however, also study the k-space top-hat power spec-

trum, since it provides a sharp cut-o↵ to all the integrals in the following, making the e↵ect

of the scale K more transparent.

Equation (3.3) together with our assumptions on the power spectrum, eq. (3.6) re-

spectively eq. (3.5), serve as initial condition for the field evolution which we consider in

the following. Before proceeding let us comment on the choice of our initial time ti, or the

corresponding temperature Ti. We want to set Ti above the scale when the axion mass

becomes important, in order to capture this process correctly by solving the equation of

motion. On the other hand, we cannot set Ti much higher, since our formalism does not

describe the e↵ect of the topological strings, which are essential for describing the random

massless field. Therefore, we chose to set Ti = 3Tosc, with Tosc determined by eq. (2.6).

The actual value depends on the chosen axion mass, but typical values are Tosc ' 1 GeV.

Since this energy scale appears profusely in our calculations, we will present our results in

units of the wavenumber K1 = a1H1 or the co-moving distance R1 = K
�1

1
, where a1 and

H1 are evaluated at the temperature of 1 GeV.

3.2 The average energy density

Sticking to the quadratic potential, the energy density of the axion field is given by

⇢(~x) =
f
2
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Since the evolution equation is linear in the harmonic approximation, the Fourier modes

evolve independent according to eq. (2.5) and we can write

✓k(a) = ✓k fk(a) . (3.8)

Here ✓k ⌘ ✓k(ai) denotes the initial condition for the field at the time ti and fk(a) is a real

function encoding the time (or a) dependence obtained from solving the equation of motion

with the initial condition fk(ai) = 1. The random properties of the field characterized by

Eq. (3.3) are thus encoded in the initial conditions ✓k. We solve eq. (2.5) numerically

for a large set of modes, for details see appendix A. We use the susceptibility �(T ) as
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value of any quantity Y (✓) is given by hY i =
R
d✓ f(✓)Y (✓). In particular, it implies for

the mean and the variance:

h✓(~x)i = 0 , h✓(~x)2i = ⇡
2
/3 . (3.1)

Let us now consider the Fourier transform

✓k =

Z

V

d
3
x ✓(~x)ei

~k~x
, ✓(~x) =

1

(2⇡)3

Z
d
3
k ✓ke

�i~k~x
. (3.2)

The integral over d3x is taken over a large volume V , such that the integral is finite, and

~x and ~k are co-moving coordinate and momentum, respectively. We have h✓ki = 0, and

✓�k = ✓
⇤
k
since ✓(~x) is real. Due to statistical homogeneity and isotropy the correlation

function in Fourier space can be written as

h✓k✓⇤k0i = (2⇡)3 �3(~k � ~k
0)P✓(k) , (3.3)

where P✓(k) denotes the power spectrum for the field, which is the Fourier transform of

the 2-point correlation function ⇠(|~r|) = h✓(~x)✓(~x+ ~r)i. We follow the conventions for the

power spectrum of Ref. [26].

We can now use the shape of the power spectrum to implement that causally discon-

nected regions should be uncorrelated. Let us introduce a characteristic wave number

K = aiHi , (3.4)

where ai is the scale factor at our initial time ti and Hi is the Hubble rate at that time.

The axion field should be uncorrelated at co-moving distances larger than 1/K. Note that

there is an ambiguity in this definition. Alternatively we could use the association of wave

number and co-moving distance as k = ⇡/R, which would lead to an additional factor ⇡ in

eq. (3.4) for R = 1/(aiHi). In general, K is defined only up to factors of order one, which

unfortunately introduces a large uncertainty, since K enters in many quantities of interest

with third power.

The normalization of the power spectrum is fixed by requiring h✓(~x)2i = ⇡
2
/3 according

to eq. (3.1). The shape of the power spectrum should be determined by the evolution of

the field from the PQ scale down to the QCD scale. In absence of a full simulation over so

many orders of magnitude, we are forced to make some (physically motivated) guesses. A

reasonable assumption seems to be a white noise (i.e., flat) power spectrum with a sharp

cut-o↵ at co-moving wave number K (“top-hat”):

P
TH

✓
(k) =

2⇡4

K3
⇥(K � k) . (3.5)

This means that fluctuations for each mode up to K are equally likely. However, the

finite cut-o↵ leads to an oscillating two-point correlation function ⇠(r) which decreases

only with the inverse of the distance-squared, and hence, implies long-range correlations in

to unphysical implications of the zero mode.
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configuration space beyond the horizon. Therefore we consider as alternative a Gaussian

suppression of high wave numbers:

P
G

✓
(k) =

8⇡4

3
p
⇡K3

exp

✓
� k

2

K2

◆
, (3.6)

which leads to exponential suppression of correlations also in configuration space. There-

fore, the Gaussian power spectrum seems to be physically better motivated and we adopt

it as our default assumption. We will, however, also study the k-space top-hat power spec-

trum, since it provides a sharp cut-o↵ to all the integrals in the following, making the e↵ect

of the scale K more transparent.

Equation (3.3) together with our assumptions on the power spectrum, eq. (3.6) re-

spectively eq. (3.5), serve as initial condition for the field evolution which we consider in

the following. Before proceeding let us comment on the choice of our initial time ti, or the

corresponding temperature Ti. We want to set Ti above the scale when the axion mass

becomes important, in order to capture this process correctly by solving the equation of

motion. On the other hand, we cannot set Ti much higher, since our formalism does not

describe the e↵ect of the topological strings, which are essential for describing the random

massless field. Therefore, we chose to set Ti = 3Tosc, with Tosc determined by eq. (2.6).

The actual value depends on the chosen axion mass, but typical values are Tosc ' 1 GeV.

Since this energy scale appears profusely in our calculations, we will present our results in

units of the wavenumber K1 = a1H1 or the co-moving distance R1 = K
�1

1
, where a1 and

H1 are evaluated at the temperature of 1 GeV.

3.2 The average energy density

Sticking to the quadratic potential, the energy density of the axion field is given by

⇢(~x) =
f
2

PQ

2


✓̇
2 � 1

a2
(~r✓)2 +m

2 (T ) ✓2
�
. (3.7)

Since the evolution equation is linear in the harmonic approximation, the Fourier modes

evolve independent according to eq. (2.5) and we can write

✓k(a) = ✓k fk(a) . (3.8)

Here ✓k ⌘ ✓k(ai) denotes the initial condition for the field at the time ti and fk(a) is a real

function encoding the time (or a) dependence obtained from solving the equation of motion

with the initial condition fk(ai) = 1. The random properties of the field characterized by

Eq. (3.3) are thus encoded in the initial conditions ✓k. We solve eq. (2.5) numerically

for a large set of modes, for details see appendix A. We use the susceptibility �(T ) as

well as the e↵ective number of degrees of freedom as a function of temperature needed to

determine H(T ) from the QCD calculations from Ref. [27], see also Refs. [28, 29] for similar

calculations.

With this notation we obtain for the energy density

⇢(~x) =
1

(2⇡)6
f
2

PQ

2

Z
d
3
kd

3
k
0
✓k✓

⇤
k0F (k, k0)e�i~x(~k�~k

0
)
, (3.9)
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Figure 1. Contributions to the average energy density according to Eq. (3.13) when using the
top-hat (TH) (blue) respectively the Gaussian (G) (red) power spectrum for the axion field. For
the plot we chose fPQ = 1012 GeV.

where we have defined

F (k, k0) = ḟkḟk0 +

 
~k · ~k0
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!
fkfk0 . (3.10)

The average energy density is obtained by using the correlator from eq. (3.3) as
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k
, (3.12)

where !k has been defined in eq. (2.5) and it can be identified with the energy of the mode

with momentum ~k. Since the power spectrum suppresses modes with k > K, at su�ciently

late times, the term k
2
/a

2 can be neglected compared to the zero-temperature mass m.

We say that all modes become non-relativistic.

Let us introduce the dimensionless wave number k̃ = k/K. It follows from the equation

of motion that once all relevant modes have become non-relativistic and m(T ) reached its

zero-temperature value, F , and consequently ⇢, scales as a
�3, as it should for cold dark

matter. We factor out the a
�3 dependence and use m

2

0
in order to define a dimensionless

quantity F̃ through F = m
2

0
(a?/a)3F̃ , with a? corresponding to T? = 100 MeV. Assuming

for illustration the top-hat power spectrum defined in eq. (3.5), we find
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✓
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configuration space beyond the horizon. Therefore we consider as alternative a Gaussian

suppression of high wave numbers:
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which leads to exponential suppression of correlations also in configuration space. There-

fore, the Gaussian power spectrum seems to be physically better motivated and we adopt

it as our default assumption. We will, however, also study the k-space top-hat power spec-

trum, since it provides a sharp cut-o↵ to all the integrals in the following, making the e↵ect

of the scale K more transparent.

Equation (3.3) together with our assumptions on the power spectrum, eq. (3.6) re-

spectively eq. (3.5), serve as initial condition for the field evolution which we consider in

the following. Before proceeding let us comment on the choice of our initial time ti, or the

corresponding temperature Ti. We want to set Ti above the scale when the axion mass

becomes important, in order to capture this process correctly by solving the equation of

motion. On the other hand, we cannot set Ti much higher, since our formalism does not

describe the e↵ect of the topological strings, which are essential for describing the random

massless field. Therefore, we chose to set Ti = 3Tosc, with Tosc determined by eq. (2.6).

The actual value depends on the chosen axion mass, but typical values are Tosc ' 1 GeV.

Since this energy scale appears profusely in our calculations, we will present our results in

units of the wavenumber K1 = a1H1 or the co-moving distance R1 = K
�1

1
, where a1 and

H1 are evaluated at the temperature of 1 GeV.

3.2 The average energy density
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Since the evolution equation is linear in the harmonic approximation, the Fourier modes

evolve independent according to eq. (2.5) and we can write

✓k(a) = ✓k fk(a) . (3.8)

Here ✓k ⌘ ✓k(ai) denotes the initial condition for the field at the time ti and fk(a) is a real

function encoding the time (or a) dependence obtained from solving the equation of motion

with the initial condition fk(ai) = 1. The random properties of the field characterized by

Eq. (3.3) are thus encoded in the initial conditions ✓k. We solve eq. (2.5) numerically

for a large set of modes, for details see appendix A. We use the susceptibility �(T ) as

well as the e↵ective number of degrees of freedom as a function of temperature needed to

determine H(T ) from the QCD calculations from Ref. [27], see also Refs. [28, 29] for similar

calculations.

With this notation we obtain for the energy density

⇢(~x) =
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particular, we will focus on constraints based on Planck data [5, 52] and provide forecasts
for next-generation CMB (e.g., stage-IV/PRISM) [references] and HI intensity mapping
experiments such as the Square Kilometre Array (SKA) [53–55].

This work is structured as follows TSM: to be edited : in section 2, we introduce
our model for ALP DM in the context of post-inflationary PQ breaking. Assuming that
ALPs are mainly produced through the vacuum realignment mechanism, we present estimates
of the cosmological relic abundance as well as the initial power spectrum of isocurvature
fluctuations. The latter’s e↵ect on CMB anisotropies and the matter power spectrum is
discussed in section 3, and then used to constrain the model’s parameter space and to derive
strong limits on ULA DM based on current and future large-scale datasets. We conclude and
summarize our findings in section 5.

2 ALPs in the post-inflationary symmetry breaking scenario

In what follows, we consider the cosmological evolution of ALP fields in the post-inflationary
PQ breaking scenario. Building on semi-analytical results obtained for the QCD axion in [34],
we adopt the harmonic approximation for the potential and focus on the vacuum realignment
mechanism which constitutes a largely model-independent way of producing relic axions in
the early Universe [21–24, 56].

A key di↵erence between QCD axions and ALPs is that the latter do not necessarily
exhibit a specific relation between mass, ma, and breaking scale, fa. Assuming that a po-
tential for the ALP field a is generated by some exotic strongly interacting sector, we may
write

V (a) ⇡ ⇤4


1 � cos

✓
a

fa

◆�
, m

2

a =
@

2
V

@a2

����
min

=
⇤4

f2
a

, (2.1)

where, in analogy to the instanton potential of QCD axions, ⇤4 takes the role of a topological
susceptibility � that is generally model-dependent and will be parametrized below. Hence,
the ALP is characterized by two out of the three parameters fa, ma and ⇤.

A crucial ingredient for the cosmological evolution of ALPs is the temperature depen-
dence of its mass. While for the QCD axion this is fully determined by non-perturbative
QCD e↵ects [see e.g., 57, 58], for general ALPs this is model-dependent and depends on
the specifics of the mechanism generating the mass for the ALP. In the following we will
assume a power law that turns into the constant zero-temperature mass ma = ⇤2

/fa for low
temperatures,

ma(T ) = min


⇤2

fa

, b
⇤2

fa

✓
⇤

T

◆
n
�

, (2.2)

The parameter b accounts for the possibility that the zero-temperature mass might not exactly
be reached at T = ⇤ but at

T0 = b
1/n⇤ . (2.3)

We will consider values in the range b ' 0.1–10. The parameter n 2 R+ controls how quickly
the mass emerges. Choosing ⇤ = 75.5 MeV, b = 10, n = 4, eq. (2.2) reproduce to good
accuracy the ma(T ) behaviour for the QCD axion as obtained in [57].

– 3 –
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With Wick’s Theorem one obtains

h✓k✓⇤k�q
✓
⇤
k0✓k0�qi = h✓k✓⇤k�q

ih✓⇤
k0✓k0�qi+ h✓k✓⇤k0ih✓⇤k�q

✓k0�qi+ h✓k✓k0�qih✓⇤k�q
✓
⇤
k0i (3.19)

= (2⇡)6P✓(|~k|)P✓(|~k � ~q|)
n
[�3(~k � ~k

0)]2 + [�3(~k + ~k
0 � ~q)]2

o
. (3.20)

where we have used eq. (3.3) and we have droped terms with �
3(~q) by assuming q 6= 0. In

order to deal with the squares of the Dirac delta function we use �
3(k = 0) = V/(2⇡)3.

The first term in the curle bracket of eq. (3.20) gives |F (k, k � q)|2. For the second term

we can use that F (q � k,�k) = F (k, k � q), which follows from fk = f
⇤
�k

. Hence the first

and second terms are equal and we obtain

h|⇢q|2i = 2
V

(2⇡)3

 
f
2

PQ

2

!
2 Z

d
3
k P✓(|~k|)P✓(|~k � ~q|)F (k, k � q)2 (3.21)

Using eq. (3.11) for ⇢ this gives for the power spectrum

P (q) =
1

V

h|⇢q|2i
⇢
2

= 2(2⇡)3
R
d
3
k P✓(|~k|)P✓(|~k � ~q|)F (k, k � q)2
⇥R

d3k P✓(k)F (k, k)
⇤
2

. (3.22)

The function F (k, k0) defined in eq. (3.10) is obtained from solving the equation of

motion as described in appendix A and it depends on time. Once the axion has reached its

zero-temperature mass and all relativistic modes have been red-shifted away, F (k, k0) scales

as a
�3, independent of k, k0. Hence the time dependence in numerator and denumerator

of eq. (3.22) cancels and the power spectrum becomes constant in time. Our numerical

calculation shows that for temperatures below

T? ⌘ 100MeV (3.23)

this is indeed the case. Since for the following considerations we only need the power

spectrum, we can stop the field evolution at that point. In the left panel of fig. 2 we plot

the power spectrum at T? for di↵erent choices of fPQ. We observe constant power at small

q (large scales), corresponding to white noise. Then the power drops at a characteristic

scale, corresponding roughly to the size of the miniclusters, and is suppressed for large

wave numbers (small scales) where fluctuations are erased by the gradient terms.

In the right panel of fig. 2 we show the dimensionless power spectrum

�2(q) =
q
3

2⇡2
P (q) , (3.24)

which corresponds to the variance of the relative density perturbations per decade of q.

From the plot we see that relative density fluctuations are of order one, i.e., non-linear.

Furthermore, the peak in the relative density fluctuations is at a characteristic wave number

corresponding to a scale a few times smaller than the horizon at Tosc. This can be seen for

instance by considering the orange curve, corresponding to fPQ = 1012 GeV. For this case,

Tosc ⇡ 1 GeV, and hence K1 = a1H1 is the inverse of the horizon at Tosc. The peak for the

orange curve is around q ⇡ 4K1, and hence it corresponds to a size 4 times smaller than

– 9 –

Axion minicluster Power spectrum

The density power spectrum
Fourier transform of the density:
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Figure 2. The axion energy density power spectrum P (q) (left) and the dimensionless power
spectrum �2(q) defined in eq. (3.24) (right), for di↵erent choices of fPQ. Solid curves in both
panels assume the Gaussian initial axion field correlator, eq. (3.6), and Ti = 3Tosc. In the right
panel, the dashed-blue curve corresponds to Ti = 2Tosc (Gaussian correlator) and the dash-dotted
orange curve corresponds to the top-hat (TH) correlator, eq. (3.5), and Ti = 3Tosc.

the horizon at Tosc. For the other two curves, fPQ is smaller, which means larger Tosc, and

therefore the peak is shifted to smaller length scales accordingly.

Another interesting result is that the power spectrum has a cut-o↵ around 2K (instead

of the naively expected K). This is most transparent for the case when we consider a top-

hat initial correlator for the axion field according to eq. (3.5), where we have a sharp cut-o↵

in k-space. In this case we have K/K1 = aiHi/(a1H1) ⇡ a1/ai ⇡ 3, since Ti/(1 GeV) ⇡
Ti/Tosc = 3. Therefore, the value q/K1 ⇡ 6, at which the dash-dotted curve goes to zero

corresponds to 2K. This result follows directly from the way how the two P✓ factors in

eq. (3.22) depend on the wave number, and it implies that although modes with k > K

do not contribute to the energy density, there is power in fluctuations up to wave numbers

2K. Note that for the Gaussian correlator, eq. (3.6), which is our default assumption, the

cut-o↵ is smeared out.

The comparison of the blue solid and dashed curves in fig. 2 shows the impact of

changing our default assumption Ti = 3Tosc to Ti = 2Tosc. Note that this implies also a

change of the wave number cut-o↵, which we define as K = aiHi. As expected we observe

a shift of the peak towards smaler wave numbers.

A note on the normalization of our power spectrum is in order. We use ⇢ to normalize

the spectrum, which is the average density from the re-alignment mechanism. If there is

an additional contribution to the axion energy density (e.g., from the string and domain

wall decay) the power would be reduced accordingly, unless the additional component itself

introduces further fluctuations.

Our calculations so-far do not include the e↵ect of gravity on the axion over-densities,

therefore the expression for the power spectrum, eq. (3.22) remains constant after T?. In

the following we are going to “switch on” gravity for the axions, and develop a model to

– 10 –

With Wick’s Theorem one obtains

h✓k✓⇤k�q
✓
⇤
k0✓k0�qi = h✓k✓⇤k�q

ih✓⇤
k0✓k0�qi+ h✓k✓⇤k0ih✓⇤k�q

✓k0�qi+ h✓k✓k0�qih✓⇤k�q
✓
⇤
k0i (3.19)

= (2⇡)6P✓(|~k|)P✓(|~k � ~q|)
n
[�3(~k � ~k

0)]2 + [�3(~k + ~k
0 � ~q)]2

o
. (3.20)

where we have used eq. (3.3) and we have droped terms with �
3(~q) by assuming q 6= 0. In

order to deal with the squares of the Dirac delta function we use �
3(k = 0) = V/(2⇡)3.

The first term in the curle bracket of eq. (3.20) gives |F (k, k � q)|2. For the second term

we can use that F (q � k,�k) = F (k, k � q), which follows from fk = f
⇤
�k

. Hence the first

and second terms are equal and we obtain

h|⇢q|2i = 2
V

(2⇡)3

 
f
2

PQ

2

!
2 Z

d
3
k P✓(|~k|)P✓(|~k � ~q|)F (k, k � q)2 (3.21)

Using eq. (3.11) for ⇢ this gives for the power spectrum

P (q) =
1

V

h|⇢q|2i
⇢
2

= 2(2⇡)3
R
d
3
k P✓(|~k|)P✓(|~k � ~q|)F (k, k � q)2
⇥R

d3k P✓(k)F (k, k)
⇤
2

. (3.22)

The function F (k, k0) defined in eq. (3.10) is obtained from solving the equation of

motion as described in appendix A and it depends on time. Once the axion has reached its

zero-temperature mass and all relativistic modes have been red-shifted away, F (k, k0) scales

as a
�3, independent of k, k0. Hence the time dependence in numerator and denumerator

of eq. (3.22) cancels and the power spectrum becomes constant in time. Our numerical

calculation shows that for temperatures below

T? ⌘ 100MeV (3.23)

this is indeed the case. Since for the following considerations we only need the power

spectrum, we can stop the field evolution at that point. In the left panel of fig. 2 we plot

the power spectrum at T? for di↵erent choices of fPQ. We observe constant power at small

q (large scales), corresponding to white noise. Then the power drops at a characteristic

scale, corresponding roughly to the size of the miniclusters, and is suppressed for large

wave numbers (small scales) where fluctuations are erased by the gradient terms.

In the right panel of fig. 2 we show the dimensionless power spectrum

�2(q) =
q
3

2⇡2
P (q) , (3.24)

which corresponds to the variance of the relative density perturbations per decade of q.

From the plot we see that relative density fluctuations are of order one, i.e., non-linear.

Furthermore, the peak in the relative density fluctuations is at a characteristic wave number

corresponding to a scale a few times smaller than the horizon at Tosc. This can be seen for

instance by considering the orange curve, corresponding to fPQ = 1012 GeV. For this case,

Tosc ⇡ 1 GeV, and hence K1 = a1H1 is the inverse of the horizon at Tosc. The peak for the

orange curve is around q ⇡ 4K1, and hence it corresponds to a size 4 times smaller than

– 9 –

• density fluctuations of order one

• charact. size a few times smaller than horizon @ Tosc

• formation of grav. bound objects (mini cluster)

Enander,  Pargner, TS, 1708.04466

Hogan, Rees, 1988
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Figure 2. The axion energy density power spectrum P (q) (left) and the dimensionless power
spectrum �2(q) defined in eq. (3.24) (right), for di↵erent choices of fPQ. Solid curves in both
panels assume the Gaussian initial axion field correlator, eq. (3.6), and Ti = 3Tosc. In the right
panel, the dashed-blue curve corresponds to Ti = 2Tosc (Gaussian correlator) and the dash-dotted
orange curve corresponds to the top-hat (TH) correlator, eq. (3.5), and Ti = 3Tosc.

the horizon at Tosc. For the other two curves, fPQ is smaller, which means larger Tosc, and

therefore the peak is shifted to smaller length scales accordingly.

Another interesting result is that the power spectrum has a cut-o↵ around 2K (instead

of the naively expected K). This is most transparent for the case when we consider a top-

hat initial correlator for the axion field according to eq. (3.5), where we have a sharp cut-o↵

in k-space. In this case we have K/K1 = aiHi/(a1H1) ⇡ a1/ai ⇡ 3, since Ti/(1 GeV) ⇡
Ti/Tosc = 3. Therefore, the value q/K1 ⇡ 6, at which the dash-dotted curve goes to zero

corresponds to 2K. This result follows directly from the way how the two P✓ factors in

eq. (3.22) depend on the wave number, and it implies that although modes with k > K

do not contribute to the energy density, there is power in fluctuations up to wave numbers

2K. Note that for the Gaussian correlator, eq. (3.6), which is our default assumption, the

cut-o↵ is smeared out.

The comparison of the blue solid and dashed curves in fig. 2 shows the impact of

changing our default assumption Ti = 3Tosc to Ti = 2Tosc. Note that this implies also a

change of the wave number cut-o↵, which we define as K = aiHi. As expected we observe

a shift of the peak towards smaler wave numbers.

A note on the normalization of our power spectrum is in order. We use ⇢ to normalize

the spectrum, which is the average density from the re-alignment mechanism. If there is

an additional contribution to the axion energy density (e.g., from the string and domain

wall decay) the power would be reduced accordingly, unless the additional component itself

introduces further fluctuations.

Our calculations so-far do not include the e↵ect of gravity on the axion over-densities,

therefore the expression for the power spectrum, eq. (3.22) remains constant after T?. In

the following we are going to “switch on” gravity for the axions, and develop a model to
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With Wick’s Theorem one obtains

h✓k✓⇤k�q
✓
⇤
k0✓k0�qi = h✓k✓⇤k�q

ih✓⇤
k0✓k0�qi+ h✓k✓⇤k0ih✓⇤k�q

✓k0�qi+ h✓k✓k0�qih✓⇤k�q
✓
⇤
k0i (3.19)

= (2⇡)6P✓(|~k|)P✓(|~k � ~q|)
n
[�3(~k � ~k

0)]2 + [�3(~k + ~k
0 � ~q)]2

o
. (3.20)

where we have used eq. (3.3) and we have droped terms with �
3(~q) by assuming q 6= 0. In

order to deal with the squares of the Dirac delta function we use �
3(k = 0) = V/(2⇡)3.

The first term in the curle bracket of eq. (3.20) gives |F (k, k � q)|2. For the second term

we can use that F (q � k,�k) = F (k, k � q), which follows from fk = f
⇤
�k

. Hence the first

and second terms are equal and we obtain

h|⇢q|2i = 2
V

(2⇡)3

 
f
2

PQ

2

!
2 Z

d
3
k P✓(|~k|)P✓(|~k � ~q|)F (k, k � q)2 (3.21)

Using eq. (3.11) for ⇢ this gives for the power spectrum

P (q) =
1

V

h|⇢q|2i
⇢
2

= 2(2⇡)3
R
d
3
k P✓(|~k|)P✓(|~k � ~q|)F (k, k � q)2
⇥R

d3k P✓(k)F (k, k)
⇤
2

. (3.22)

The function F (k, k0) defined in eq. (3.10) is obtained from solving the equation of

motion as described in appendix A and it depends on time. Once the axion has reached its

zero-temperature mass and all relativistic modes have been red-shifted away, F (k, k0) scales

as a
�3, independent of k, k0. Hence the time dependence in numerator and denumerator

of eq. (3.22) cancels and the power spectrum becomes constant in time. Our numerical

calculation shows that for temperatures below

T? ⌘ 100MeV (3.23)

this is indeed the case. Since for the following considerations we only need the power

spectrum, we can stop the field evolution at that point. In the left panel of fig. 2 we plot

the power spectrum at T? for di↵erent choices of fPQ. We observe constant power at small

q (large scales), corresponding to white noise. Then the power drops at a characteristic

scale, corresponding roughly to the size of the miniclusters, and is suppressed for large

wave numbers (small scales) where fluctuations are erased by the gradient terms.

In the right panel of fig. 2 we show the dimensionless power spectrum

�2(q) =
q
3

2⇡2
P (q) , (3.24)

which corresponds to the variance of the relative density perturbations per decade of q.

From the plot we see that relative density fluctuations are of order one, i.e., non-linear.

Furthermore, the peak in the relative density fluctuations is at a characteristic wave number

corresponding to a scale a few times smaller than the horizon at Tosc. This can be seen for

instance by considering the orange curve, corresponding to fPQ = 1012 GeV. For this case,

Tosc ⇡ 1 GeV, and hence K1 = a1H1 is the inverse of the horizon at Tosc. The peak for the

orange curve is around q ⇡ 4K1, and hence it corresponds to a size 4 times smaller than
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• white noise power spectrum for small k

• fluctuations linear for k << K 

• coeff. C ≈ 0.04 - 0.3 obtained by fitting to numerical results for P(k)

K ⌘ aoscH(Tosc)
�2(k) ⇡ C

�
k
K

�3

P (k) ⇡ 2⇡2C
K3

k ⌧ K
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Figure 2. The axion energy density power spectrum P (q) (left) and the dimensionless power
spectrum �2(q) defined in eq. (3.24) (right), for di↵erent choices of fPQ. Solid curves in both
panels assume the Gaussian initial axion field correlator, eq. (3.6), and Ti = 3Tosc. In the right
panel, the dashed-blue curve corresponds to Ti = 2Tosc (Gaussian correlator) and the dash-dotted
orange curve corresponds to the top-hat (TH) correlator, eq. (3.5), and Ti = 3Tosc.

the horizon at Tosc. For the other two curves, fPQ is smaller, which means larger Tosc, and

therefore the peak is shifted to smaller length scales accordingly.

Another interesting result is that the power spectrum has a cut-o↵ around 2K (instead

of the naively expected K). This is most transparent for the case when we consider a top-

hat initial correlator for the axion field according to eq. (3.5), where we have a sharp cut-o↵

in k-space. In this case we have K/K1 = aiHi/(a1H1) ⇡ a1/ai ⇡ 3, since Ti/(1 GeV) ⇡
Ti/Tosc = 3. Therefore, the value q/K1 ⇡ 6, at which the dash-dotted curve goes to zero

corresponds to 2K. This result follows directly from the way how the two P✓ factors in

eq. (3.22) depend on the wave number, and it implies that although modes with k > K

do not contribute to the energy density, there is power in fluctuations up to wave numbers

2K. Note that for the Gaussian correlator, eq. (3.6), which is our default assumption, the

cut-o↵ is smeared out.

The comparison of the blue solid and dashed curves in fig. 2 shows the impact of

changing our default assumption Ti = 3Tosc to Ti = 2Tosc. Note that this implies also a

change of the wave number cut-o↵, which we define as K = aiHi. As expected we observe

a shift of the peak towards smaler wave numbers.

A note on the normalization of our power spectrum is in order. We use ⇢ to normalize

the spectrum, which is the average density from the re-alignment mechanism. If there is

an additional contribution to the axion energy density (e.g., from the string and domain

wall decay) the power would be reduced accordingly, unless the additional component itself

introduces further fluctuations.

Our calculations so-far do not include the e↵ect of gravity on the axion over-densities,

therefore the expression for the power spectrum, eq. (3.22) remains constant after T?. In

the following we are going to “switch on” gravity for the axions, and develop a model to
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With Wick’s Theorem one obtains

h✓k✓⇤k�q
✓
⇤
k0✓k0�qi = h✓k✓⇤k�q

ih✓⇤
k0✓k0�qi+ h✓k✓⇤k0ih✓⇤k�q

✓k0�qi+ h✓k✓k0�qih✓⇤k�q
✓
⇤
k0i (3.19)

= (2⇡)6P✓(|~k|)P✓(|~k � ~q|)
n
[�3(~k � ~k

0)]2 + [�3(~k + ~k
0 � ~q)]2

o
. (3.20)

where we have used eq. (3.3) and we have droped terms with �
3(~q) by assuming q 6= 0. In

order to deal with the squares of the Dirac delta function we use �
3(k = 0) = V/(2⇡)3.

The first term in the curle bracket of eq. (3.20) gives |F (k, k � q)|2. For the second term

we can use that F (q � k,�k) = F (k, k � q), which follows from fk = f
⇤
�k

. Hence the first

and second terms are equal and we obtain

h|⇢q|2i = 2
V

(2⇡)3

 
f
2

PQ

2

!
2 Z

d
3
k P✓(|~k|)P✓(|~k � ~q|)F (k, k � q)2 (3.21)

Using eq. (3.11) for ⇢ this gives for the power spectrum

P (q) =
1

V

h|⇢q|2i
⇢
2

= 2(2⇡)3
R
d
3
k P✓(|~k|)P✓(|~k � ~q|)F (k, k � q)2
⇥R

d3k P✓(k)F (k, k)
⇤
2

. (3.22)

The function F (k, k0) defined in eq. (3.10) is obtained from solving the equation of

motion as described in appendix A and it depends on time. Once the axion has reached its

zero-temperature mass and all relativistic modes have been red-shifted away, F (k, k0) scales

as a
�3, independent of k, k0. Hence the time dependence in numerator and denumerator

of eq. (3.22) cancels and the power spectrum becomes constant in time. Our numerical

calculation shows that for temperatures below

T? ⌘ 100MeV (3.23)

this is indeed the case. Since for the following considerations we only need the power

spectrum, we can stop the field evolution at that point. In the left panel of fig. 2 we plot

the power spectrum at T? for di↵erent choices of fPQ. We observe constant power at small

q (large scales), corresponding to white noise. Then the power drops at a characteristic

scale, corresponding roughly to the size of the miniclusters, and is suppressed for large

wave numbers (small scales) where fluctuations are erased by the gradient terms.

In the right panel of fig. 2 we show the dimensionless power spectrum

�2(q) =
q
3

2⇡2
P (q) , (3.24)

which corresponds to the variance of the relative density perturbations per decade of q.

From the plot we see that relative density fluctuations are of order one, i.e., non-linear.

Furthermore, the peak in the relative density fluctuations is at a characteristic wave number

corresponding to a scale a few times smaller than the horizon at Tosc. This can be seen for

instance by considering the orange curve, corresponding to fPQ = 1012 GeV. For this case,

Tosc ⇡ 1 GeV, and hence K1 = a1H1 is the inverse of the horizon at Tosc. The peak for the

orange curve is around q ⇡ 4K1, and hence it corresponds to a size 4 times smaller than
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• expect qualitative similar result including topological defects and the 
periodic potential

• allow for factor 5 uncertainty from comparison with simulations 
(incl. strings)  Vaquero, Redondo, Stadler, 1809.09241

K ⌘ aoscH(Tosc)
�2(k) ⇡ C

�
k
K

�3

P (k) ⇡ 2⇡2C
K3

k ⌧ K

<latexit sha1_base64="TkMZk/wOBx5RtF1wvTB8KHgwOGU=">AAADd3ichVHbbtNAEB0nXFpzaSiPPLAiAqUvlZ0imr6VpqBKEVKQmrZSt4nWzsZd2bGdtRMRrPwRPwR/gsQDx1uHy0PVtdYze+bMmdkdL41UljvOd6tWv3f/wcONTfvR4ydPtxrPts+yZK59OfCTKNEXnshkpGI5yFUeyYtUSzH1Innuhd0yfr6QOlNJfJovU3k1FUGsJsoXOaBR41uPcTmbqwUTo4LrKUsyf8VOWqd/TzuMz2ZzMba5JwMVF0JrsVwV0crmxzLKxbDdCsERaaqTL6zLeCQneYtPtPCLcFX0Vlyr4DrfGe4xzu3+v+QbUpunathmXXCHe1CV8bgqYleVQ4hGrDdqNJ1dx3Fc12Wl4+6/c+AcHHTaboe5ZQirSdXqJ40fxGlMCfk0pylJiimHH5GgDN8lueRQCuyKCmAanjJxSSuykTsHS4IhgIb4BzhdVmiMc6mZmWwfVSJsjUxGr7E/GkUP7LKqhJ/B/sL+arDg1gqFUS47XMJ6UNw0ip+A53QNxl2Z04q57uXuzPJWOU2oY26j0F9qkPKe/h+dY0Q0sNBEGH0wzAAanjkv8AIx7AAdlK+8VmDmxmNYYaw0KnGlKKCnYcvXRz8Y83qW7HbnrL3rwv/8tnl4VA18g17QK2phqvt0SCfURx++tW11rPfWUe1n/WX9Tb11Q61ZVc5z+m/V3d8DDsp7</latexit><latexit sha1_base64="TkMZk/wOBx5RtF1wvTB8KHgwOGU="></latexit><latexit sha1_base64="TkMZk/wOBx5RtF1wvTB8KHgwOGU="></latexit><latexit sha1_base64="TkMZk/wOBx5RtF1wvTB8KHgwOGU="></latexit>



T. Schwetz — LDMA, Nov 2019 15

VI. Post-Inflation Realignment and Large-Scale Observables

Adiabatic

Isocurvature

k

P(k)

fiso
2

k*

Figure VI.1.: Sketch of the primordial Power Spectrum for adiabatic and isocurvature Fluc-
tuations in the Axion Energy Density. The power spectrum of the isocurvature
fluctuations (red) is constant for low k modes and exponentially suppressed
above scales k > K, where K corresponds to scales of the comoving Hubble
horizon when the field oscillations commence, cf. the discussion in Sec. IV. The
scales of the fluctuations around the cut-o� K are far too small to be accesible
with cosmological observations. The adiabatice power spectrum (blue) behaves
as k

≠3 for super-horizon modes. We define a scale kú where the relative am-
plitude of the isocurvature power spectrum with respect to the adiabatic power
spectrum is f

2
iso

. Note that the power spectra are calculated in the conformal
Newtonian gauge.

results in Sec. IV.2, we have found that in the low k region the dimensionless power spectrum
of the isocurvature fluctuations behaves as

�2

iso = C

3
k

K

43

, (VI.10)

with K = RH(Tosc) and the constant of proportionality C must be determined by numerically
following the axion field evolution. Our results, as well as the results from Vaquero et al in
Ref. [108], indicate that C = 0.01 . . . 0.1 and the exact value depends on the actual Peccei-
Quinn breaking scale and details on the explicit temperature dependence of the axion mass. See
Ref. [137] for a more in-depth discussion of this topic also including the general case of ALPs.
Recall that C = 1 can be interpreted as the scale of the fluctutaions being equal to Hubble
horizon at Tosc and smaller C suggest smaller characteristic scales for the fluctuations. With
�2 for low k modes given in Eq. (VI.10), we may write the power spectrum of the isocurvature
fluctuations symbolically as

Piso(k) =
I

2fi
2
K

3 for k < K

exp. suppressed for k > K
. (VI.11)

Note that at T = Tosc, K marks the transition from sub- to super-horizon modes.
Since the power spectrum of the adiabatic density fluctuations is generated long before matter-

radiation equality it usually called primordial [177]. In our case where we also expect the
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isotropy: HI < 10�4
MP . This leads to upper bounds on TGH and Tmax about one order of

magnitude larger than the ones quoted above.
In summary, the condition eq. (2.19) for the post-inflationary scenario can be satisfied

under reasonable assumptions on inflation in the region of ALP parameters that are of interest
to us. As this generally requires high values of EI , we expect relatively large tensor-to-scalar
ratios in such scenarios, likely to be in the observable range in the near future (with some
inflationary model-dependence).

3 Constraints from cosmic large-scale structure

3.1 Large-scale imprint of isocurvature fluctuations

Fluctuations in the ALP density will a↵ect the initial conditions of structure formation and
their subsequent evolution through gravitational instability. In what follows, we assume lin-
ear theory and focus on scalar perturbations to describe their imprint on CMB anisotropies
and the matter power spectrum. The initial perturbations are set deep within the radia-
tion era where all modes of interest are well outside the horizon. Adopting the comoving
(total-matter) gauge, the standard initial conditions for adiabatic modes are related to the
primordial spatial curvature perturbation, R, generated by inflation through [e.g., 70]

�k =
4

9

1 + (2/5)X⌫

1 + (4/15)X⌫

✓
k

RH

◆
2

Rk , X⌫ =
⇢⌫

⇢� + ⇢⌫

, (3.1)

where � = �⇢/⇢ is the total density contrast, ⇢� and ⇢⌫ are the energy densities of photons and
neutrinos, respectively, and X⌫ = (7/8)(4/11)4/3

Ne↵ ⇡ 0.69 for an e↵ective number of neu-
trino species Ne↵ = 3.046. Adiabatic perturbations in single fluid components i characterized
by equation-of-state parameters wi satisfy

�
ad

i

1 + wi

=
3

4
�
ad (adiabatic mode) . (3.2)

As usual, we assume that �2

R takes the form of a nearly scale-invariant spectrum parametrized
by

�2

R = As

✓
k

k⇤

◆
ns�1

, ns ⇡ 1 , (3.3)

where the amplitude As is defined with respect to the pivot scale k⇤ = 0.05 Mpc�1.
In addition to the adiabatic mode, the breaking of the PQ symmetry after inflation will

induce isocurvature perturbations in the ALP field (see section 2.3). These may be written
in terms of an initial entropy perturbation, Sa, defined relative to the photon component,

Sa =
�a

1 + wa

�
3

4
�� =

�
iso
a

1 + wa

�
3

4
�
iso

� ⇡ �
iso

a �
3

4
�
iso

� ⇡ �
iso

a , (3.4)

where we again assumed radiation domination, and the last step follows from the general
isocurvature condition

P
i
�⇢

iso

i
= 0 [e.g., 70]. In eq. (3.4), we have also set wa ⇡ 0, i.e. for

the purposes of this work, we will use that the evolution of perturbations in the ALP field can
be approximated by that of a cold DM component. Although changes in wa are important at
very early times, the ALP field quickly adopts the behaviour of pressureless matter as soon
as T . Tosc. If the oscillations commence su�ciently deep within the radiation era, ALPs
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White noise isocurvature fluctuations in the CMB
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fit of 6-param LCDM + fiso
Planck 2015 

TT, EE, TE power spectra

fiso < 0.31 (2�)
<latexit sha1_base64="wLSg13jZCmh2weAtbhwmnjP1Zg8="></latexit>



T. Schwetz — LDMA, Nov 2019

Sensitivity forecasts 
• Planck-like CMB experiment (s3) 

l = 30—2500

• Stage IV CMB experiment (s4) 
l < 5000 (temperature & polarization)

• 21cm observations with SKA:  
900 antenas (SKA1), 3600 antenas (SKA2) 
optimistic assumptions on foregrounds 

• LCDM + fiso + αs + mν + H0 + xH

18

Figure 6. Constraint on the zero-temperature ALP mass ma from isocurvature fluctuations for
di↵erent assumptions on the temperature dependence of the ALP mass parametrized by n and b, see
eq. (2.2), assuming that the ALP provides all DM. The solid curves correspond to our estimate of
the amplitude of isocurvature fluctuations, and the bands between solid and dashed curves indicates
a factor 5 uncertainty. The left panel corresponds to the bound fiso < 0.23 from current Planck
data, while the right panel shows the potential bound assuming the sensitivity of a future S4 CMB
of fiso < 0.07. The region below the curves is excluded.

Experiment fiso ↵s
P

m⌫ [eV] ns As ⌦b ⌧ h ⌦m x̄H

s3 0.38 0.0052 0.34 0.0034 0.021 0.0045 0.0045 0.032 0.038 -

s3+SKA1 0.20 0.0044 0.28 0.0031 0.021 0.0037 0.0043 0.027 0.031 0.082

s4 0.067 0.0018 0.050 0.0016 0.0080 0.00064 0.0017 0.0045 0.0053 -

s4 +SKA2 0.016 0.0017 0.042 0.0016 0.0080 0.00051 0.0017 0.0034 0.0040 0.012

Table 2. Marginalized 1� constraints on cosmological parameters using a Fisher analysis.

CMB bounds from Planck, as well as the sensitivity of a future S4 experiment. In the regions
of parameter space where the predictions for fiso exceed the Planck bound fiso < 0.23, the
assumption of post-inflationary ALP DM is excluded. This excluded region is illustrated in
the left panel of Figure 6. The right panel shows the potential improvement corresponding
the the sensitivity of fiso < 0.07 from an S4 CMB experiment.

TSM: mention 21 cm

TSM: some more discussion

5 Conclusions
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Isocurvature component for DM ALPs
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Figure 5. Predicted isocurvature fraction according to eq. (4.2) as a function of the zero-temperature
ALP mass ma for di↵erent assumptions on the ALP mass-temperature dependence parametrized by
n and b as defined in eq. (2.2). Solid curves correspond to our estimate of the isocurvature amplitude,
and bands between solid and dashed curves indicate a factor 5 uncertainty. Horizontal dotted lines
show upper bounds on fiso from Planck (2�-level) and the sensitivity of future CMB s4 and advanced
21-cm experiments (SKA2). Shaded regions correspond to those of figure 1. The PQ breaking scale
fa is fixed for each ma by requiring that ALPs provide all DM.

polarization measurements.
It is interesting to compare our results to the isocurvature bounds obtained by the Planck

collaboration [46, 94]. Their analysis uses di↵erent models to constrain the isocurvature
component. The most general one assumes a free power law for the isocurvature, adiabatic
and cross fluctuations. The power law is constructed between k = 0.002–0.1 Mpc�1, i.e. over
scales accessible to Planck. For these models, it is found that �  0.37 at k⇤ = 0.05 Mpc�1,
where � ⌘ f

2

iso
/(1 + f

2

iso
). Our bound fiso  0.31 corresponds to �  0.088. Since the model

presented here consists of fewer parameter (in particular, the slope of the isocurvature power
spectrum is fixed by the ALP model), these estimates appear consistent with each other. A
specific axion model with fixed primordial tilt (spectral index) n

iso
s = 1 and free amplitude is

considered in [94], leading to � . 0.04. This model, however, requires PQ symmetry breaking
before the end of inflation, in contrast to our assumption. Similarly, axion models with free
spectral tilt [46] cannot be directly compared to our case (where n

iso
s = 4 is fixed).

4.2 Implications for ALP masses

Using our prediction for the ALP isocurvature power spectrum eq. (2.17) and the parametriza-
tion of the adiabatic spectrum in eq. (3.3), we can relate the value of fiso to the underlying
ALP parameters,

fiso =

s
Ck3

⇤
AsK

3
, (4.2)

where the values of C and K are calculated as described in section 2. Assuming the fiducial
value As = 2.215 ⇥ 10�9, we see that the isocurvature fraction on CMB scales becomes of
order one for K/k⇤ ⇠ (As/C)�1/3

⇠ 1000.

In figure 5, we show the predicted values of fiso as a function of the ALP mass ma for
di↵erent assumptions on the mass-temperature dependence ma(T ). The width of the bands
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particular, we will focus on constraints based on Planck data [5, 52] and provide forecasts
for next-generation CMB (e.g., stage-IV/PRISM) [references] and HI intensity mapping
experiments such as the Square Kilometre Array (SKA) [53–55].

This work is structured as follows TSM: to be edited : in section 2, we introduce
our model for ALP DM in the context of post-inflationary PQ breaking. Assuming that
ALPs are mainly produced through the vacuum realignment mechanism, we present estimates
of the cosmological relic abundance as well as the initial power spectrum of isocurvature
fluctuations. The latter’s e↵ect on CMB anisotropies and the matter power spectrum is
discussed in section 3, and then used to constrain the model’s parameter space and to derive
strong limits on ULA DM based on current and future large-scale datasets. We conclude and
summarize our findings in section 5.

2 ALPs in the post-inflationary symmetry breaking scenario

In what follows, we consider the cosmological evolution of ALP fields in the post-inflationary
PQ breaking scenario. Building on semi-analytical results obtained for the QCD axion in [34],
we adopt the harmonic approximation for the potential and focus on the vacuum realignment
mechanism which constitutes a largely model-independent way of producing relic axions in
the early Universe [21–24, 56].

A key di↵erence between QCD axions and ALPs is that the latter do not necessarily
exhibit a specific relation between mass, ma, and breaking scale, fa. Assuming that a po-
tential for the ALP field a is generated by some exotic strongly interacting sector, we may
write

V (a) ⇡ ⇤4


1 � cos

✓
a

fa

◆�
, m

2

a =
@

2
V

@a2

����
min

=
⇤4

f2
a

, (2.1)

where, in analogy to the instanton potential of QCD axions, ⇤4 takes the role of a topological
susceptibility � that is generally model-dependent and will be parametrized below. Hence,
the ALP is characterized by two out of the three parameters fa, ma and ⇤.

A crucial ingredient for the cosmological evolution of ALPs is the temperature depen-
dence of its mass. While for the QCD axion this is fully determined by non-perturbative
QCD e↵ects [see e.g., 57, 58], for general ALPs this is model-dependent and depends on
the specifics of the mechanism generating the mass for the ALP. In the following we will
assume a power law that turns into the constant zero-temperature mass ma = ⇤2

/fa for low
temperatures,

ma(T ) = min


⇤2

fa

, b
⇤2

fa

✓
⇤

T

◆
n
�

, (2.2)

The parameter b accounts for the possibility that the zero-temperature mass might not exactly
be reached at T = ⇤ but at

T0 = b
1/n⇤ . (2.3)

We will consider values in the range b ' 0.1–10. The parameter n 2 R+ controls how quickly
the mass emerges. Choosing ⇤ = 75.5 MeV, b = 10, n = 4, eq. (2.2) reproduce to good
accuracy the ma(T ) behaviour for the QCD axion as obtained in [57].
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Lower limits on ALP mass
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particular, we will focus on constraints based on Planck data [5, 52] and provide forecasts
for next-generation CMB (e.g., stage-IV/PRISM) [references] and HI intensity mapping
experiments such as the Square Kilometre Array (SKA) [53–55].

This work is structured as follows TSM: to be edited : in section 2, we introduce
our model for ALP DM in the context of post-inflationary PQ breaking. Assuming that
ALPs are mainly produced through the vacuum realignment mechanism, we present estimates
of the cosmological relic abundance as well as the initial power spectrum of isocurvature
fluctuations. The latter’s e↵ect on CMB anisotropies and the matter power spectrum is
discussed in section 3, and then used to constrain the model’s parameter space and to derive
strong limits on ULA DM based on current and future large-scale datasets. We conclude and
summarize our findings in section 5.

2 ALPs in the post-inflationary symmetry breaking scenario

In what follows, we consider the cosmological evolution of ALP fields in the post-inflationary
PQ breaking scenario. Building on semi-analytical results obtained for the QCD axion in [34],
we adopt the harmonic approximation for the potential and focus on the vacuum realignment
mechanism which constitutes a largely model-independent way of producing relic axions in
the early Universe [21–24, 56].

A key di↵erence between QCD axions and ALPs is that the latter do not necessarily
exhibit a specific relation between mass, ma, and breaking scale, fa. Assuming that a po-
tential for the ALP field a is generated by some exotic strongly interacting sector, we may
write
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where, in analogy to the instanton potential of QCD axions, ⇤4 takes the role of a topological
susceptibility � that is generally model-dependent and will be parametrized below. Hence,
the ALP is characterized by two out of the three parameters fa, ma and ⇤.

A crucial ingredient for the cosmological evolution of ALPs is the temperature depen-
dence of its mass. While for the QCD axion this is fully determined by non-perturbative
QCD e↵ects [see e.g., 57, 58], for general ALPs this is model-dependent and depends on
the specifics of the mechanism generating the mass for the ALP. In the following we will
assume a power law that turns into the constant zero-temperature mass ma = ⇤2

/fa for low
temperatures,

ma(T ) = min


⇤2

fa

, b
⇤2
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✓
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, (2.2)

The parameter b accounts for the possibility that the zero-temperature mass might not exactly
be reached at T = ⇤ but at

T0 = b
1/n⇤ . (2.3)

We will consider values in the range b ' 0.1–10. The parameter n 2 R+ controls how quickly
the mass emerges. Choosing ⇤ = 75.5 MeV, b = 10, n = 4, eq. (2.2) reproduce to good
accuracy the ma(T ) behaviour for the QCD axion as obtained in [57].
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Figure 6. Constraints on the zero-temperature ALP mass ma from isocurvature fluctuations for
di↵erent assumptions on the mass-temperature dependence by n and b as defined in eq. (2.2). ALPs
are assumed to provide all DM. Solid curves correspond to our estimate of the isocurvature amplitude,
and bands between solid and dashed curves indicate a factor 5 uncertainty. The left panel corresponds
to fiso < 0.31 (2�-level) from Planck. The middle and right panels show, respectively, potential bounds
assuming 1�-sensitivities of a future CMB s4 experiment (fiso < 0.067) and its combination with an
SKA2-like 21-cm survey (fiso < 0.016). The region below the curves is disfavoured.

indicates a factor 5 systematic uncertainty in predicting the amplitude, i.e. the constant C

in eq. (4.2), as we discussed in section 2.4. The qualitative behaviour of these curves follows
from the K-dependence shown in the right panel of figure 1 since, up to a minor dependence
on C, we roughly have fiso / K

�3/2 from eq. (4.2). From the estimates in section 2.1, we,

therefore, expect that fiso / m
�3/4

a (m�1/2

a ) in the small-n (large-n) limit, in good agreement
with the figure.

For ma . 10�16 eV, we observe from figure 5 that the amplitude of isocurvature fluctu-
ations with k ⇠ k⇤ can become comparable to the adiabatic modes and, therefore, relevant to
CMB observations. The predicted values of fiso are compared to the CMB bounds implied by
Planck, as well as the sensitivity of future CMB s4 and 21-cm experiments. In the regions of
parameter space where, the predictions for fiso exceed the Planck constraint fiso < 0.31, the
assumption of post-inflationary ALP DM is excluded at the 2�-level. This excluded region
is illustrated in the left panel of figure 6. The exclusion is stronger for large values of n and
small values of b. For n = 10, we see that values of ma . 10�17 eV are excluded. Even in the
small n-limit, the non-trivial exclusion for ma . 10�20 eV is obtained, somewhat stronger
than constraints obtained from the Lyman-↵ forest [41, 42]. Note that our bounds on ULAs
extend to much larger masses than the ones obtained from CMB and large-scale structure
data in [36–40], but rely on the post-inflationary hypothesis.

The middle panel of figure 6 shows the potential improvement corresponding to a sensi-
tivity fiso < 0.067 (1�-level) for a future CMB s4 experiment. We observe that the exclusion
limits on ma become roughly one order of magnitude stronger. Finally, the right panel cor-
responds to the limit fiso < 0.016 (1�-level), potentially achievable with the combination of
CMB s4 experiments and advanced 21-cm observations based on an optimistic SKA2 config-
uration, which would lead to another order of magnitude improvement in ma. In the most
optimistic case, a limit of ma & 10�14 eV could be achieved while a more robust bound (with
respect to the mass-temperature dependence) is ma & few ⇥ 10�19 eV.
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Planck 2015 sensitivity forecasts
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Crucial assumption: post-inflationary scenario

• PQ symmetry is broken only after 
end of inflation or it gets restored 
after inflation:

• upper bound from non-observation 
of CMB tensor modes (in simple 
inflation models):
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numerical simulations including the full periodic axion potential. Qualitatively the picture
obtained there agrees with the results of [34] for k ⌧ K. This confirms the white noise
power spectrum and supports our parameterization in eq. (2.16) including the extrapolation
to small k values. Quantitatively there are some di↵erences in the value of the coe�cient C

in eq. (2.16). Adopting values for ma, n, and b corresponding to the QCD axion, our method
yields C ⇡ 0.15 � 0.16, while [35] finds C = 0.03 ± 0.01, approximately a factor 5 smaller
than our semi-analytical result. We use this as an estimate for the systematic uncertainty
in our prediction for the amplitude of the isocurvature power spectrum. Below we will show
results for values of C in the range between our estimate based on eq. (2.17) and 5 times
smaller.

Note that the model dependence of the ALP mass temperature dependence parametrized
by b and n introduces an uncertainty of similar size or larger. Furthermore, our choices of the
cut-o↵ Q of the initial power spectrum of the field P✓(k), as well as the choice of the initial
time (Ti = 3Tosc) are somewhat arbitrary and introduce further numerical uncertainties on
the value of C, see [34] for a detailed discussion and some quantitative estimates.

In summary, while our method to calculate the ALP energy density and power spectrum
is clearly approximate it gives an order of magnitude estimate consistent with numerical
simulation. Given the even larger uncertainty due to the ALP-model dependence we proceed
with our estimates.

The post-inflationary assumption. In our work we always assume that the ALP field
takes random values in causally disconnected regions at temperatures well above Tosc. This
implies that PQ symmetry breaking happens after the end of inflation or the PQ symme-
try becomes restored at some point after inflation. The condition for this so-called post-
inflationary scenario is [50]

fa < max(TGH, Tmax) . (2.18)

Here, the Gibbons-Hawkings temperature is defined by TGH = HI/2⇡, with HI being the
Hubble parameter during inflation, and Tmax = ✏e↵EI is the maximal temperature after infla-
tion with EI denoting the energy scale of inflation and ✏e↵ is a dimensionless e�ciency param-
eter with 0 < ✏e↵ < 1. Using HI =

p
8⇡/3E

2

I
/MP we have Tmax = ✏e↵(3⇡/2)1/4

p
TGHMP ,

which can be larger than TGH for ✏e↵ ' 1.

Under the assumption of slow-roll inflation driven by a single scalar field with a canonical
kinetic term, CMB data sets an upper limit on EI from the non-observation of primordial
tensor modes: EI < 1.7 ⇥ 1016 GeV (95% CL) [46], which implies TGH < 1.1 ⇥ 1013 GeV.
From the left panel of Figure 1 we see that for this constraint, the condition fa < Tmax can
be fulfilled in the relevant parameter region for ma & 10�19 eV assuming ✏e↵ & 0.1.

A more model-independent bound on the scale of inflation has been derived in [63] by
using large-scale isotropy: HI < 10�4

MP . This leads to upper bounds on TGH and Tmax

about one order of magnitude larger than the ones quoted above. In summary, the condition
for the post-inflationary scenario, eq. (2.18), can be fulfilled under reasonable assumptions
on inflation in the region of ALP parameters of interest for us.

3 Constraints from cosmic large-scale structure

Ignore for the moment, work in progress
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Crucial assumption: post-inflationary scenario

• PQ symmetry is broken only after 
end of inflation or it gets restored 
after inflation:

• upper bound from non-observation 
of CMB tensor modes (in simple 
inflation models):
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numerical simulations including the full periodic axion potential. Qualitatively the picture
obtained there agrees with the results of [34] for k ⌧ K. This confirms the white noise
power spectrum and supports our parameterization in eq. (2.16) including the extrapolation
to small k values. Quantitatively there are some di↵erences in the value of the coe�cient C

in eq. (2.16). Adopting values for ma, n, and b corresponding to the QCD axion, our method
yields C ⇡ 0.15 � 0.16, while [35] finds C = 0.03 ± 0.01, approximately a factor 5 smaller
than our semi-analytical result. We use this as an estimate for the systematic uncertainty
in our prediction for the amplitude of the isocurvature power spectrum. Below we will show
results for values of C in the range between our estimate based on eq. (2.17) and 5 times
smaller.

Note that the model dependence of the ALP mass temperature dependence parametrized
by b and n introduces an uncertainty of similar size or larger. Furthermore, our choices of the
cut-o↵ Q of the initial power spectrum of the field P✓(k), as well as the choice of the initial
time (Ti = 3Tosc) are somewhat arbitrary and introduce further numerical uncertainties on
the value of C, see [34] for a detailed discussion and some quantitative estimates.

In summary, while our method to calculate the ALP energy density and power spectrum
is clearly approximate it gives an order of magnitude estimate consistent with numerical
simulation. Given the even larger uncertainty due to the ALP-model dependence we proceed
with our estimates.

The post-inflationary assumption. In our work we always assume that the ALP field
takes random values in causally disconnected regions at temperatures well above Tosc. This
implies that PQ symmetry breaking happens after the end of inflation or the PQ symme-
try becomes restored at some point after inflation. The condition for this so-called post-
inflationary scenario is [50]

fa < max(TGH, Tmax) . (2.18)

Here, the Gibbons-Hawkings temperature is defined by TGH = HI/2⇡, with HI being the
Hubble parameter during inflation, and Tmax = ✏e↵EI is the maximal temperature after infla-
tion with EI denoting the energy scale of inflation and ✏e↵ is a dimensionless e�ciency param-
eter with 0 < ✏e↵ < 1. Using HI =

p
8⇡/3E

2

I
/MP we have Tmax = ✏e↵(3⇡/2)1/4

p
TGHMP ,

which can be larger than TGH for ✏e↵ ' 1.

Under the assumption of slow-roll inflation driven by a single scalar field with a canonical
kinetic term, CMB data sets an upper limit on EI from the non-observation of primordial
tensor modes: EI < 1.7 ⇥ 1016 GeV (95% CL) [46], which implies TGH < 1.1 ⇥ 1013 GeV.
From the left panel of Figure 1 we see that for this constraint, the condition fa < Tmax can
be fulfilled in the relevant parameter region for ma & 10�19 eV assuming ✏e↵ & 0.1.

A more model-independent bound on the scale of inflation has been derived in [63] by
using large-scale isotropy: HI < 10�4

MP . This leads to upper bounds on TGH and Tmax

about one order of magnitude larger than the ones quoted above. In summary, the condition
for the post-inflationary scenario, eq. (2.18), can be fulfilled under reasonable assumptions
on inflation in the region of ALP parameters of interest for us.

3 Constraints from cosmic large-scale structure

Ignore for the moment, work in progress
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Figure 2. Imprint of ALP DM isocurvature fluctuations (generated after inflation; dotted lines) on
CMB anisotropies (unlensed; left) and the linear matter power spectrum, Pm(k), at various redshifts
0  z  103 for fiso = 0.1 (expressed in comoving gauge; right). Results for the adiabatic mode are
shown as solid lines. As isocurvature and adiabatic modes are uncorrelated, total spectra are obtained
by adding their individual contributions.

can e↵ectively be treated as a cosmic matter fluid, with initial conditions set by eqs. (3.1)
and (3.4). Even so, the ALP field will exhibit an e↵ective sound speed [71, 72],

c
2

s =
k

2

k2 + 4m2
aR

2
, (3.5)

that introduces a corresponding Jeans scale, kJ , below which the evolution of ALP density
perturbations significantly di↵ers from standard cold DM. Therefore, we must additionally
require k ⌧ kJ . Considering scales relevant to CMB observations, it turns out that both of
the above criteria are already well satisfied for ALPs with ma & 10�24 eV [39, 40, 72]. Since
the lower bounds on ma implied by the energy scale of inflation lie above this threshold (see
section 2.4), our approximate treatment is justified.

As discussed in section 2.3, the initial isocurvature spectrum, �2

S , is then specified by
eq. (2.17), where the cuto↵ at k ⇠ K can be safely ignored for practical purposes and is for-
mally shifted to infinity.3 Hence the ALP DM isocurvature mode is completely characterized
by the amplitude of �2

S which is commonly parametrized in terms of the entropy-to-curvature
ratio, fiso, defined at the pivot scale,

f
2

iso ⌘
�2

S
�2

R

����
k=k⇤

. (3.6)

In this work, we will derive constraints on fiso based on Planck observations [5, 54] and adopt
the Fisher matrix formalism [73] to obtain forecasts for future CMB and 21-cm experiments.

3For the smallest masses considered here, this and the treatment of ALPs in terms of a cold DM component
strictly hold on CMB scales only. As we shall see shortly, however, current CMB data imply ma & 10�20 eV,
which allows us to use these assumptions on smaller scales k . 1–10h Mpc�1 as well.
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Figure 1. Imprint of the ALP DM isocurvature mode generated after inflation on the matter power
spectrum P (k) at z = 0 (expressed in comoving gauge; left) for fiso = 0.3 (red) and adiabatic modes
only (blue). Shown are results for linear (dashed lines) and nonlinear spectra obtained with HALOFIT
(solid lines). The right panel illustrates the ALP e↵ect on the variance �

2
M of the linear density field.

Figure 2. Combined constraints (cosmic shear + clustering + CMB lensing) on the zero-temperature
ALP mass, ma, for di↵erent assumptions on the mass-temperature dependence as given in eq. (2.2).
Solid curves show estimated bounds, and bands between solid and dashed curves indicate a factor
5 uncertainty. The left panel corresponds to kcut = 0.05 Mpc�1 and fiso < 0.011 (1�-level). More
optimistic results are shown in the right panel, where kcut = 0.2 Mpc�1 and fiso < 0.003 (1�-level).
The region below the curves is disfavored, and ALPs are assumed to provide all DM.

3.3 CMB lensing

As for cosmic shear, bundles of CMB photons are deformed by the LSS [e.g. 53, 54]. The
lensing signal of the CMB is a complementary probe to cosmic shear and galaxy clustering
since its weight function peaks at higher redshift than the one of a Euclid survey. By
assuming the unlensed CMB to be homogeneous, the lensing signal can be reconstructed.
An unbiased, minimal variance estimator was constructed by [82, 83] and we write

Ĉ  (`) = C  (`) + N  (`) . (3.11)
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CMB lensing, galaxy clustering, cosmic shear
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Figure 1. Imprint of the ALP DM isocurvature mode generated after inflation on the matter power
spectrum P (k) at z = 0 (expressed in comoving gauge; left) for fiso = 0.3 (red) and adiabatic modes
only (blue). Shown are results for linear (dashed lines) and nonlinear spectra obtained with HALOFIT
(solid lines). The right panel illustrates the ALP e↵ect on the variance �
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M of the linear density field.
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Figure 2. Combined constraints (cosmic shear + clustering + CMB lensing) on the zero-temperature
ALP mass, ma, for di↵erent assumptions on the mass-temperature dependence as given in eq. (2.2).
Solid curves show estimated bounds, and bands between solid and dashed curves indicate a factor
5 uncertainty. The left panel corresponds to kcut = 0.05 Mpc�1 and fiso < 0.011 (1�-level). More
optimistic results are shown in the right panel, where kcut = 0.2 Mpc�1 and fiso < 0.003 (1�-level).
The region below the curves is disfavored, and ALPs are assumed to provide all DM.

3.3 CMB lensing

As for cosmic shear, bundles of CMB photons are deformed by the LSS [e.g. 53, 54]. The
lensing signal of the CMB is a complementary probe to cosmic shear and galaxy clustering
since its weight function peaks at higher redshift than the one of a Euclid survey. By
assuming the unlensed CMB to be homogeneous, the lensing signal can be reconstructed.
An unbiased, minimal variance estimator was constructed by [82, 83] and we write

Ĉ  (`) = C  (`) + N  (`) . (3.11)
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Figure 2. Combined constraints (cosmic shear + clustering + CMB lensing) on the zero-temperature
ALP mass, ma, for di↵erent assumptions on the mass-temperature dependence as given in eq. (2.2).
Solid curves show estimated bounds, and bands between solid and dashed curves indicate a factor
5 uncertainty. The left panel corresponds to kcut = 0.05 Mpc�1 and fiso < 0.011 (1�-level). More
optimistic results are shown in the right panel, where kcut = 0.2 Mpc�1 and fiso < 0.003 (1�-level).
The region below the curves is disfavored, and ALPs are assumed to provide all DM.

3.3 CMB lensing

As for cosmic shear, bundles of CMB photons are deformed by the LSS [e.g. 53, 54]. The
lensing signal of the CMB is a complementary probe to cosmic shear and galaxy clustering
since its weight function peaks at higher redshift than the one of a Euclid survey. By
assuming the unlensed CMB to be homogeneous, the lensing signal can be reconstructed.
An unbiased, minimal variance estimator was constructed by [82, 83] and we write
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The region below the curves is disfavored, and ALPs are assumed to provide all DM.
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since its weight function peaks at higher redshift than the one of a Euclid survey. By
assuming the unlensed CMB to be homogeneous, the lensing signal can be reconstructed.
An unbiased, minimal variance estimator was constructed by [82, 83] and we write

Ĉ  (`) = C  (`) + N  (`) . (3.11)

– 6 –

combined sens. at 1σ from CMB lensing (S4 experiment) + 
galaxy clustering & cosmic shear (EUCLID)
sensitivity dominated by cosmic shear

preliminary
preliminary
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Summary

• isocurvature fluctuations are generated in  
post-inflationary ALP DM scenario

• white noise power spectrum with cut-off due to uncorrelated 
field values per Hubble patch

• lower limit on ALP mass in range 10-19—10-16 eV from 
Planck CMB data (weaker limits for temp.-indep. ALP mass)

• purely gravitational effect

• significant improvement expected from  
S4 CMB, 21cm maps, EUCLID LSS (cosmic shear)
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Thank you for your attention!


