Isocurvature bounds on ALP DM

Thomas Schwetz

based on Enander, Pargner, TS, 1708.04466 Feix, Frank, Pargner, Reischke, Schäfer, TS, 1903.06194 Feix, Hagstotz, Pargner, Reischke, Schäfer, TS, in prep.

LDMA'19 — Venice, Italy, 20-22 Nov 2019

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Axion-like particles (ALPs)

• pNBG boson:

spontaneous U(1) breaking scale f_a ("PQ-scale") expl. U(1) breaking at Λ by exotic non-pert. effects

$$V(a) \approx \Lambda^4 \left[1 - \cos\left(\frac{a}{f_a}\right) \right], \qquad m_a^2 = \left. \frac{\partial^2 V}{\partial a^2} \right|_{\min} = \frac{\Lambda^4}{f_a^2}$$

parametrize temperature dependence

$$m_a(T) = \min\left[\frac{\Lambda^2}{f_a}, b\frac{\Lambda^2}{f_a}\left(\frac{\Lambda}{T}\right)^n\right]$$

• QCD axion for: $\Lambda = 75.5 \text{ MeV}, b = 10, n = 4$

Cosmological evolution

small field values \rightarrow harmonic approx for potential: $V(\theta,T) \approx \frac{1}{2}m^2(T)\theta^2$

 $\ddot{\theta}_k + 3H(T)\dot{\theta}_k + \omega^2\theta_k = 0$ $\omega^2 = \frac{k^2}{a^2} + m(T)^2$

- modes outside the horizon 3H(T) > ω: over-damped oscillator, field frozen: θ_k = const
- modes inside the horizon 3H(T) < ω: oscillator with frequency ω, amplitude decays with expansion relativistic modes are red shifted relative to non-relativistic modes

 initial conditions depend crucially on PQ-symmetry breaking happening during or after inflation

Adiabatic vs isocurvature fluctuations

• density contrast in component i = DM, b, γ

$$\delta_i = \frac{\rho_i - \overline{\rho}_i}{\overline{\rho}_i}$$

decompose DM fluctuations

$$\delta_{\rm DM} = \delta_{\rm DM}^{ad} + \delta_{\rm DM}^{iso}$$

$$\delta_{\rm DM}^{ad} = \frac{3}{4} \delta_{\gamma} \quad , \qquad \delta_{\rm DM}^{iso} = \delta_{\rm DM} - \frac{3}{4} \delta_{\gamma}$$

- adiabatic and isocurvature fluctuations evolve differently
- constraints from CMB on isocurvature component (< few % at CMB scales)

pre-inflationary case

- PQ symmetry gets broken during inflation
- inflaton and axion are present simultaneously → generation of isocurvature fluctuations
 e.g. Turner Wilczek, 91; Lyth, 92

This talk: post-inflationary scenario

- ALP field takes random values in causally disconnected regions
- random values of periodic field → cosmic strings
- Kibble mechanism: `scaling' of string network: roughly one string per Hubble volume during expansion of Universe

• Before onset of field oscillations remains ~ one string per Hubble volume and $\langle \theta(\vec{x})^2 \rangle = \pi^2/3$

Klaer, Moore, 1708.07521; Gorghetto, Hardy, Villadoro, 1806.04677

Initial condition

- axion field smooth on scales < horizon uncorrelated on scales > horizon
- assume power spectrum for axion field w Gaussian cut-off

$$\langle \theta_k \theta_{k'}^* \rangle = (2\pi)^3 \,\delta^3(\vec{k} - \vec{k'}) P_\theta(k)$$

$$P_{\theta}^{\rm G}(k) = \frac{8\pi^4}{3\sqrt{\pi}K^3} \exp\left(-\frac{k^2}{K^2}\right)$$

- normalization: fixed by flat distribution $\langle \theta(\vec{x})^2 \rangle = \pi^2/3$
- cut-off: comoving horizon wave-number shortly before field starts oscillating: $K = a_i H_i$

Axion energy density

$$\rho(\vec{x}) = \frac{f_{\rm PQ}^2}{2} \left[\dot{\theta}^2 - \frac{1}{a^2} (\vec{\nabla}\theta)^2 + m^2 (T) \theta^2 \right]$$

 $\theta_k(a) = \theta_k f_k(a)$

go to Fourier space for field

$$\rho(\vec{x}) = \frac{1}{(2\pi)^6} \frac{f_{PQ}^2}{2} \int d^3k d^3k' \,\theta_k \theta_{k'}^* F(k,k') e^{-i\vec{x}(\vec{k}-\vec{k'})}$$
$$F(k,k') = \dot{f}_k \dot{f}_{k'} + \left(\frac{\vec{k} \cdot \vec{k'}}{a^2} + m^2(T)\right) f_k f_{k'}$$

Axion energy density

$$\rho(\vec{x}) = \frac{f_{\rm PQ}^2}{2} \left[\dot{\theta}^2 - \frac{1}{a^2} (\vec{\nabla}\theta)^2 + m^2 (T) \theta^2 \right]$$

 $\theta_k(a) = \theta_k f_k(a)$

go to Fourier space for field

$$\rho(\vec{x}) = \frac{1}{(2\pi)^6} \frac{f_{PQ}^2}{2} \int d^3k d^3k' \,\theta_k \theta_{k'}^* F(k,k') e^{-i\vec{x}(\vec{k}-\vec{k'})}$$
$$F(k,k') = \dot{f}_k \dot{f}_{k'} + \left(\frac{\vec{k} \cdot \vec{k'}}{a^2} + m^2\left(T\right)\right) f_k f_{k'}$$

• average energy density (without string contribution):

$$\overline{\rho} \equiv \langle \rho(\vec{x}) \rangle = \frac{1}{2\pi^2} \frac{f_{\rm PQ}^2}{2} \int_0^\infty dk \, k^2 \, P_\theta(k) F(k,k)$$

$$F(k,k) = \dot{f}_k^2 + \omega_k^2 f_k^2$$

Axion energy density

generalizes usuall estimate:

$$\rho \sim f_a^2 m_0 m(T_{\rm osc}) \left(\frac{a_{\rm osc}}{a}\right)^3 \langle \theta^2 \rangle$$

• average energy density (without string contribution):

$$\overline{\rho} \equiv \langle \rho(\vec{x}) \rangle = \frac{1}{2\pi^2} \frac{f_{\rm PQ}^2}{2} \int_0^\infty dk \, k^2 \, P_\theta(k) F(k,k)$$

$$F(k,k) = \dot{f}_k^2 + \omega_k^2 f_k^2$$

ALP DM relic density

use DM abundance to fix f_a as a function of ALP mass

$$m_a(T) = \min\left[\frac{\Lambda^2}{f_a}, b\frac{\Lambda^2}{f_a}\left(\frac{\Lambda}{T}\right)^n\right]$$
$$m_0 = \frac{\Lambda^2}{f_a}$$

Fourier transform of the density:

$$\rho_q = \frac{1}{(2\pi)^3} \frac{f_{\mathrm{PQ}}^2}{2} \int d^3k \,\theta_k \theta_{k-q}^* F(k,k-q)$$

variance (use Wick's theorem):

$$\begin{split} \langle |\rho_q|^2 \rangle &= \left[\frac{1}{(2\pi)^3} \frac{f_{\rm PQ}^2}{2} \right]^2 \int d^3k d^3k' \, \langle \theta_k \theta_{k-q}^* \theta_{k'}^* \theta_{k'-q} \rangle F(k,k-q) F^*(k',k'-q) \\ &= 2 \frac{V}{(2\pi)^3} \left(\frac{f_{\rm PQ}^2}{2} \right)^2 \int d^3k \, P_\theta(|\vec{k}|) P_\theta(|\vec{k}-\vec{q}|) \, F(k,k-q)^2 \end{split}$$

this gives for the power spectrum

$$P(q) = \frac{1}{V} \frac{\langle |\rho_q|^2 \rangle}{\overline{\rho}^2} = 2(2\pi)^3 \frac{\int d^3k \, P_\theta(|\vec{k}|) P_\theta(|\vec{k} - \vec{q}|) \, F(k, k - q)^2}{\left[\int d^3k \, P_\theta(k) F(k, k)\right]^2}$$

Enander, Pargner, TS, 1708.04466

- density fluctuations of order one
- charact. size a few times smaller than horizon @ Tosc
- formation of grav. bound objects (mini cluster) Hogan, Rees, 1988

- white noise power spectrum for small k
- fluctuations linear for k << K
- coeff. $C \approx 0.04 0.3$ obtained by fitting to numerical results for P(k)

- expect qualitative similar result including topological defects and the periodic potential
- allow for factor 5 uncertainty from comparison with simulations (incl. strings) Vaquero, Redondo, Stadler, 1809.09241

Isocurvature fluctuations from post-inflationary ALP DM

White noise isocurvature fluctuations in the CMB

isocurvature component with white noise spectrum implemented in CLASS

Feix, Frank, Pargner, Reischke, Schäfer, TS, 1903.06194

White noise isocurvature fluctuations in the CMB

Sensitivity forecasts

- Planck-like CMB experiment (s3) l = 30 2500
- Stage IV CMB experiment (s4)
 l < 5000 (temperature & polarization)
- 21cm observations with SKA: 900 antenas (SKA1), 3600 antenas (SKA2) optimistic assumptions on foregrounds
- LCDM + f_{iso} + a_s + m_v + H_0 + x_H

Experiment	$f_{ m iso}$	$lpha_{ m s}$	$\sum m_{\nu} [\text{eV}]$	$n_{ m s}$	$A_{\mathbf{s}}$	$\Omega_{ m b}$	au	h	$\Omega_{ m m}$	\bar{x}_H
s3	0.38	0.0052	0.34	0.0034	0.021	0.0045	0.0045	0.032	0.038	-
s3+SKA1	0.20	0.0044	0.28	0.0031	0.021	0.0037	0.0043	0.027	0.031	0.082
$\mathbf{s4}$	0.067	0.0018	0.050	0.0016	0.0080	0.00064	0.0017	0.0045	0.0053	-
s4 + SKA2	0.016	0.0017	0.042	0.0016	0.0080	0.00051	0.0017	0.0034	0.0040	0.012
										1σ sens

Feix, Frank, Pargner, Reischke, Schäfer, TS, 1903.06194

Isocurvature component for DM ALPs

Feix et al., 1903.06194
$$f_{\rm iso} \approx \sqrt{\frac{Ck_*^3}{A_sK^3}}$$

$$m_a(T) = \min\left[\frac{\Lambda^2}{f_a}, b\frac{\Lambda^2}{f_a}\left(\frac{\Lambda}{T}\right)^n\right]$$

Lower limits on ALP mass

Planck 2015

sensitivity forecasts

$$m_a(T) = \min\left[\frac{\Lambda^2}{f_a}, b\frac{\Lambda^2}{f_a}\left(\frac{\Lambda}{T}\right)^n\right]$$

Feix et al., 1903.06194

Crucial assumption: post-inflationary scenario

 PQ symmetry is broken only after end of inflation or it gets restored after inflation:

$$f_a < \max\left[\frac{H_I}{2\pi}, \epsilon_{\text{eff}} E_I\right] \qquad H_I^2 = \frac{8\pi}{3} \frac{E_I^4}{M_{Pl}^2}$$

e.g., Hertzberg, Tegmark, Wilczek, 0807.1726

 upper bound from non-observation of CMB tensor modes (in simple inflation models):

$$E_I < 1.7 \times 10^{16} \text{ GeV} (95\% \text{ CL})$$

 $\frac{H_I}{2\pi} < 10^{13} \text{ GeV}$ Planck, 1807.06211

Crucial assumption: post-inflationary scenario

 PQ symmetry is broken only after end of inflation or it gets restored after inflation:

$$f_a < \max\left[\frac{H_I}{2\pi}, \epsilon_{\text{eff}} E_I\right] \qquad H_I^2 = \frac{8\pi}{3} \frac{E_I^4}{M_{Pl}^2}$$

e.g., Hertzberg, Tegmark, Wilczek, 0807.1726

 upper bound from non-observation of CMB tensor modes (in simple inflation models):

$$E_I < 1.7 \times 10^{16} \text{ GeV} (95\% \text{ CL})$$

 $\frac{H_I}{2\pi} < 10^{13} \text{ GeV}$ Planck, 1807.0621

Outlook

explore signatures in the matter power spectrum

Feix et al. 1903.06194

Outlook

explore signatures in the matter power spectrum

Feix, Hagstotz, Pargner, Reischke, Schäfer, TS, in prep.

- cosmic shear
- CMB lensing
- galaxy clustering
- galaxy counts
- crucial: how far can we trust linear predictions?

CMB lensing, galaxy clustering, cosmic shear

Feix, Hagstotz, Pargner, Reischke, Schäfer, TS, in prep.

combined sens. at 1σ from CMB lensing (S4 experiment) + galaxy clustering & cosmic shear (EUCLID) sensitivity dominated by **cosmic shear**

Summary

- isocurvature fluctuations are generated in post-inflationary ALP DM scenario
- white noise power spectrum with cut-off due to uncorrelated field values per Hubble patch
- lower limit on ALP mass in range 10⁻¹⁹—10⁻¹⁶ eV from Planck CMB data (weaker limits for temp.-indep. ALP mass)
- purely gravitational effect
- significant improvement expected from S4 CMB, 21cm maps, EUCLID LSS (cosmic shear)

Summary

- isocurvature fluctuations are generated in post-inflationary ALP DM scenario
- white noise power spectrum with cut-off due to uncorrelated field values per Hubble patch
- lower limit on ALP mass in range 10⁻¹⁹—10⁻¹⁶ eV from Planck CMB data (weaker limits for temp.-indep. ALP mass)
- purely gravitational effect
- significant improvement expected from S4 CMB, 21cm maps, EUCLID LSS (cosmic shear)

Thank you for your attention!