FELIX-based streaming DAQ for EIC

Outline: ● Detector concepts ● Data rate ● FELIX DAQ ● Test stands & Beam tests

Jin Huang (BNL)

Many thanks to the inputs from

Elke **Aschenauer**, Kai **Chen**, Abhay **Deshpande**, Alexander **Kiselev**, John **Kuczewski** Tonko **Ljubicic**, David **Morrison**, Christopher **Pinkenburg**, Martin **Purschke**

RHIC @ mid-2020s

See also: PHENIX silicon tracker with streaming front end DOI:10.1016/j.nima.2014.04.017

- ▶ 2018: Cost/schedule review and DOE approval for production start of long lead-time items (CD-1/3A)
- PD2/3 review next week!
- 2022 installation, 2023: First data

Global Timing Module

Streaming DAQ concept of sPHENIX trackers

MVTX RU ASIC: ALPIDE INTT ROC FPHX TPC FEE
SAMPA v4 → v5

BNL-712/FELIXv2 as DAM Streaming ASIC \rightarrow DAQ

Proposed eRHIC @ end of 2020s

BNL detector concepts

See also TOSIDE, JLEIC concepts in last two talks [Repond, Heyes]

EIC: unique collider

→ unique real-time challenges

	EIC	RHIC	LHC → HL-LHC
Collision species	$\vec{e} + \vec{p}, \vec{e} + A$	$\vec{p} + \vec{p}/A$, $A + A$	p + p/A, $A + A$
Top x-N C.M. energy	140 GeV	510 GeV	13 TeV
Bunch spacing	2-10 ns	100 ns	25 ns
Peak x-N luminosity	10 ³⁴ cm ⁻² s ⁻¹	10 ³² cm ⁻² s ⁻¹	$10^{34} \rightarrow 10^{35} \text{cm}^{-2} \text{s}^{-1}$
x-N cross section	50 μb	40 mb	80 mb
Top collision rate	500 kHz	10 MHz	1-6 GHz
dN _{ch} /dη in p+p/e+p	0.1-Few	~3	~6
Charged particle rate	4M N _{ch} /s	60M N _{ch} /s	30G+ N _{ch} /s

- ► EIC has lower collision rate and event size is small → signal data rate is low
- But events are precious and have diverse topology
- EIC luminosity is high, so background and systematic control is key

From Stream-III Workshop:

Collision signal data rate

sPH-cQCD-2018-001, https://indico.bnl.gov/event/5283/

- Details in simulation presented in last workshop (also in backup)
- Tracker + calorimeter ~ 40 Gbps
- + PID detector + 2x for noise ~ 100 Gbps
- Signal-collision data rate of 100 Gbps seems quite manageable,
 - < sPHENIX TPC peak disk rate of 200 Gbps

Beam-gas interactions

- As discussed in last workshop, EIC combine high luminosity and small signal x-section, and background control would be critical
- Beam gas interactions.
 - p + p (beam gas) cross section ~ 40 mb
- Beam gas interaction rate ~ 13kHz / 10m beam line < 10% EIC collision rate
- The following estimation assumes
 - HERA inspired flat 10⁻⁹ mbar vac in experimental region of |z|<450 cm

Vacuum pressure	10 ⁻⁹ mbar	
Beampipe temperature	Room temperature	
Average atomic weight of gas	Hydrogen (H ²)	
Molecular density (for 10 m pipe)	2.65 x 10 ¹⁰ molecules/cm ²	
Luminosity (Ring-Ring)	10.05 x 10 ³³ cm ⁻² s ⁻¹	
Bunch intensity (R-R) (e/p)	15.1 / 6.0 x 10 ¹⁰	
Beam Current (R-R) (e/p)	2.5 / 1 A	
Bunch spacing (Ring-Ring)	8.7 ns → 1320 bunches	
ElectronxProton beam energy	10 GeV x 275 GeV	

Courtesy: E.C. Aschenauer eRHIC pre-CDR review

Beam gas event in a detector (upstream)

Simulation: https://github.com/sPHENIX-Collaboration/singularity

- 250 GeV proton beam on proton beam gas, sqrt[s] ~ 22 GeV
- For this illustration, use pythia-8 very-hard interaction event (q^hat > 5 GeV/c)

Beam gas event in a detector (downstream) Simulation: https://github.com

Simulation: https://github.com/sPHENIX-Collaboration/singularity

- 250 GeV proton beam on proton beam gas, sqrt[s] ~ 22 GeV
- For this illustration, use pythia-8 very-hard interaction event (q^hat > 5 GeV/c)

GEANT4-based data rate simulation:Beam gas event on tracker (more detectors in backup)

Extract mean value/collision (signal data rate) and tails (relates to buffer depth requirement)

Raw data:

3 pixel x 16 bit / MAPS hit

Raw data:

3 (strip) x5(time)x 10 bit / TPC hit

+ headers (60 bits)

Raw data:

3 (strip) x5(time)x 10 bit / GEM hit + headers (60 bits)

Rate summary for beam gas

- Very similar rate distribution among subsystems when compared with EIC collisions
- With an assumed vacuum profile (10⁻⁹ mbar flat within experiment region):
 - Overall few Gbps @ 12kHz beam gas at 10⁻⁹ mbar in |z|<450 cm (detector region)

Data rate: sum together

sPH-cQCD-2018-001: https://indico.bnl.gov/event/5283/, Simulation: https://github.com/sPHENIX-Collaboration/singularity

- ▶ Total signal ~ 100 Gbps @ 10³⁴ cm⁻² s⁻¹ < sPHENIX peak disk rate</p>
- Beam gas rate << EIC collision signal data rate</p>

Strategy for an EIC real-time system

- For the signal data rate from EIC (100 Gbps), we can aim for filtering-out and streaming all collision in raw data without a hardware-based global triggering
 - Also consider hybrid DAQ for EIC: possibilities for distribute triggers for calibration systematics control. e.g. trigger for laser calibration pulses, pedestal
- Requirement
 - All front-end to continuously digitize data or self-triggering
 e.g. PHENIX FVTX, STAR eTOF, all sPHENIX trackers, any many prototypes in this workshop
 - Reliably synchronize all front-ends and identify faults
 - Recording all collision data (100 Gbps if raw)
 - If needed, filtering out background with low signal loss (10⁻⁴?)
 - Requiring reliable data flow → control systematics:
 Low data loss rate < 10⁻⁴(?) and/or loss in a deterministic manor

FELIX-based DAQ

sPH-cQCD-2018-001 https://indico.bnl.gov/event/5283/

- Full streaming readout front-end (buffer length : μs)
 - → DAQ interface to commodity computing via PCIe-based FPGA cards (FELIX)
 - → Disk/tape storage of streaming time-framed zero-suppressed raw data (buffer length : s)
 - → Collision event tagging in offline production (latency : days)
- Why time-framed streaming readout for collision data?
 - Diversity of EIC event topology. Streaming minimizing systematics by avoiding hardware trigger decision, keeping background and history
 - At 500kHz event rate, multi-μs-integration detectors would require streaming, e.g. TPC, MAPS
- Why FELIX-like DAQ interface?
 - Deterministic transmission from FEE up to server memory, buffering and busy generation
 - 0.5 Tbps x bi-direction IO, bridging μs-level FEE buffer length with ms+ DAQ network time scale
 - Interface with commodity computing via PCIe @ ~100Gbps
 - Distribute experiment timing and synchronization cross large system
- Why keep raw data?
 - EIC collision signal @ 100 Gbps < sPHENIX disk rate, it is affordable to disk-write all raw signal data
 - Allow time + special run needed for final calibration, followed by prompt reconstruction
 Filter out noise if needed

Front-End Link eXchange (FELIX)

- FELIX: DAQ interface card initially developed for ATLAS Phase 1 upgrade and beyond
 - Similar architecture have wide support in 2020+ for high throughput DAQ e.g. ATLAS, ALICE, LHCb, CBM, Proto-DUNE
- Future versions concepts supporting48x 25Gbps transceivers and PCIe Gen4

[K. Chen et al, submitted to TIM]

BNL-712 FELIX v2, internal diagram

Timing

- All FEE & FELIX synchronized to collider collision clock
- Broadcast 64b-clock counter and validate synchronization
- Timing prototype
 - Zynq-based timing system board with multiple SFP+ links
 - Demonstrated SFP+ based timing link at 112.8 MHz

Timing board (ZYNQ)

Updated at: 2019-Jan-08 01:16:14

Streaming frontend

- Streaming ASIC in prototyping: ALPIDE, FPHX, SAMPA
- Generic SFP+ and Versatile link support
- sPHENIX version of SAMPA with 80ns-shaping in development
 - Based on ALICE development

80ns SAMPA components in testing

Analog + ADC data at USP

Online Storage

- Data buffer box
 - Average out data transfer: reduced rate and resilient to interruptions
 - Consist of multiple storage servers for write/transfer
- ► Existing server at RCF:
 Write test demonstrated
 ~50Gbps continuous memory
 → disk write-only speed for single server

COTS storage server, hosting ~100 disk slots

Courtesy: Martin Purschke (BNL)

Test stands: SAMPA for EIC RD GEM tracker

eRD6 TPC HBD 8x SAMPA FEE 256 ADC/FEE

Commodity server

Cosmic through mini-TPC test stand

Reconstructed GEM hits from SAMPA data

FELIX v2 DAQ interface

1000 800 600 400 200 0 2 4 6 8 10 12 Pad Y 35 40 Pad X Plot: John Kuczewski (BNL)

Jin Huang <ihuang@bnl.gov>

Beam test: MAPS silicon tracker (on-going)

Supported by LANL LDRD

Readout Unit 4.5M pixel/RU

Commodity server

ALPIDE MAPS tracker in test beam

120 GeV p

LDRD 19-028: Common development using FELIX DAQ

- Producing FELIX cards in two productions
 - Possible to support additional EIC-oriented test stands
- Position openings for high speed DAQ developer
 - Multiple openings in senior and junior high speed DAQ developers in both Physics Department and Instrumentation Division
 - Applications and questions welcomed: https://jobs.bnl.gov/search-jobs?orgIds=3437&ac=18928

Summary

- sPHENIX will use a hybrid DAQ joining streaming tracker and triggered calorimeters
- Data rate estimated for the EIC detector, which defines the EIC DAQ strategy: at 100 Gbps collision signal rate, possible to stream record all
- FELIX-type DAQ architecture fits EIC purpose.
 - Similar architecture have wide support in 2020+ for high throughput DAQ e.g. ATLAS, ALICE, LHCb, CBM
 - Deterministically bridging custom front-end with commodity computing
- Welcome to joint R&D for EIC DAQ

FPHX streaming front-end for PHENIX/sPHENIX

FELIX DAQ chain reading out EIC GEM detectors

Exp timing/sync

Extra Slides

Example: sPHENIX-based EIC detector

Tonko's estimation:

Signal rate = 16*8 Gbps ~ 100 Gbps @ 10^{33} cm⁻² s⁻¹, 200kHz collision

How about in G4:

Tonko's estimation (2015)

The eRHIC Detector ("BeAST") Readout Scheme

Detector	Bytes per track	
TPC	100 x (80+4+4) ~ 9000	
Silicon	7 x (4+4+4) ~ 90	
RICH	20 x (4+4+4) ~ 250	
EMCal	1 x (4+4+4) ~ 20	
HCal	1 x (4+4+4) ~ 20	
Total per track	9.4 kB	
For 1.7M tracks/s	(1.7M x 9.4 kB =) 16 GB/s	

e+p collision 18+275 GeV/c DIS @ $Q^2 \sim 100 (GeV/c)^2$

Full detector "Minimal bias" EIC events in sPHENIX framework: quick first look

Multiplicity check for all particles
Minimal bias Pythia6 e+p 20 GeV + 250 GeV
53 µb cross section

BNL EIC taskforce studies

https://wiki.bnl.gov/eic/index.php/Detector Design Requirements

Based on BNL EIC task-force eRHIC-pythia6 55ub sample

pythia.ep.20x250.1Mevents.RadCor=0.root

CKIN(3) changed from 0.00000 to 0.00000 CKIN(4) changed from -1.00000 to -1.00000

GEANT4-based detector simulation for DAQ simulation: tracker

sPH-cQCD-2018-001, https://indico.bnl.gov/event/5283/

Extract mean value/collision that produces average signal data rate and tails that produce the buffer depth and latency requirements

Raw data: 16 bit / MAPS hit

Raw data: 3x5 10 bit / TPC hit

3x10 signal hit / collision \rightarrow 0.2 Gbps @10³⁴ cm⁻²s⁻¹

+ headers (60 bits)

- MAPS is vulnerable to beam background see later slides
- ALPIDE MAPS noise are low, expect 10⁻⁶ /pixel/strobe, 200M pixel, 3us strobe → ~1Gbps

Raw data: 3x5 10 bit / GEM hit + headers (60 bits)

GEANT4-based detector simulation for DAQ simulation: central calorimeters

Raw data: 31x 14 bit / active tower +padding + headers ~ 512 bits / active tower

sPH-cQCD-2018-001, https://indico.bnl.gov/event/5283/

GEANT4-based detector simulation for DAQ simulation: forward calorimeters

Raw data: 31x 14 bit / active tower +padding + headers ~ 512 bits / active tower

sPH-cQCD-2018-001, https://indico.bnl.gov/event/5283/

Beam gas multiplicity

- ▶ 250 GeV/c proton beam on H₂ gas target
- C.M. rapidity~3.1, sqrt[s] ~ 22 GeV, cross section~40 mb
- ▶ Lab per-pseudorapidity multiplicity is higher than e+p, but *not* orders of magnitude higher

Beam gas vertex sensitivity - tracker

- Average active hit for each beam gas vertex bin
- 250 GeV proton beam on proton beam gas, Pythia-8 M.B.

Beam gas vertex sensitivity – calo.

- Average active hit for each beam gas vertex bin
- ▶ 250 GeV proton beam on proton beam gas, Pythia-8 M.B.

GEANT4-based detector simulation: beam gas event on tracker

Extract mean value/collision (signal data rate) and tails (relates to buffer depth requirement)

Raw data:

3 pixel x 16 bit / MAPS hit

Raw data:

3 (strip) x5(time)x 10 bit / TPC hit

+ headers (60 bits)

Raw data:

3 (strip) x5(time)x 10 bit / GEM hit + headers (60 bits)

GEANT4-based detector simulation:beam gas event on central calorimeters

Raw data: 31x 14 bit / active tower +padding + headers ~ 512 bits / active tower

GEANT4-based detector simulation:beam gas event on forward calorimeters

Raw data: 31x 14 bit / active tower +padding + headers ~ 512 bits / active tower

Per-strobe ALPIDE multiplicity

Four factor contributes in a MC simulation:

- Per-collision multiplicity, PDF as in last page
- Number of pile up collision, Poisson distributed
- The triggered collision, |z|<10 cm (trigger mode only)
- Number of noise, Poisson distributed

Comments received:

Duplicated hits between strobes are not included yet (Thanks to Jo)

UPC electron background not included (Thanks to Xin)

Aiming for 10⁻⁶ noise in final detector (Many)

p+p multiplicity, per-strobe, chip-4

- p+p collision related data is completely dominated by pile-ups
- Central limit theorem: High number of pile up → low non-Gauss high tails
- Continuous-mode is quite safe @ 10-us strobe window

Chip multiplicity [Pixel]

13 MHz p+p collision, 10-us strobe width+integration, 1 trigger, 10⁻⁴ noise per strobe

Jin Huang <jhuang@bnl.gov> Streaming readout IV

39

Au+Au multiplicity, per-strobe, chip-4

- Can we do better?
 - Further reducing collision rate to 50kHz by introducing a beam crossing angle
 - Reducing noise by 1/10 to 10⁻⁵ noise per strobe
- Still challenging for continuous, but plausible to have overflow dead-time < 0.1% further using multi-hit buffer on chip (eating the safety factor)

50 kHz Au+Au collision, periodic strobe, 10⁻⁵ noise per strobe

Timing distributions

- All PHENIX/sPHENIX FEE are synced to beam clock/counter. Expecting similar for EIC detector
- BNL-712/FELIX can receive clock of multiple protocols (SPF+, White Rabbit, TTC, ...) via a timing mezzanine card
- SI5345 jitter cleaner control jitter to <0.1 ps
- BNL-712/FELIX carries 48x 10 Gbps downlink fiber for control data to FEE. Beam clock and sync word can be encoded on fiber (e.g. 8b10b encoding)
- For EIC hadron beam RF, extra cautious need to be taken for hadron machine ramp from low gamma to high gamma, which leads to clock frequency variation [next slide].

т	т	~	
- 1	н	u	

TTC-PON

White Rabbit

Device	SI5338	SI5345	SI5341
Jitter (ps)	8.58	0.09	6.39
Device	CDCM6208	LMK03200	LMK03033
Jitter (ps)	2.06	5.91	2.74
Device	CDCE62005		
Jitter (ps)	8.61		

The jitter from 10 kHz to 1 MHz

Courtesy of Kai Chen (BNL)

Kai Chen - FELIX Design Review

Embedded clock demo with variable beam clock frequency

Evolution of the RHIC 1008 Interaction region

SPHENIX PHENIX experiment An EIC detector 16y+ operation Comprehensive central Path of PHENIX upgrade upgrade base on previous leads to a capable EIC Broad spectrum of detector BaBar magnet physics 180+ physics papers with 25k citations Rich jet and HF physics Large coverage of tracking, calorimetry and PID program 1.4-M channel streaming → Microscopic nature of Full streaming DAQ based **QGP** on sPHENIX arXiv:1501.06197 [nucl_tex arXiv:1402.1209 [nucl-ex]

~2000

2017→2023, CD-1/3A Approved

RHIC: A+A, spin-polarized p+p, spin-polarized p+A

>2025

Time

EIC: e+p, e+A

pdate: sPH-cQCD-2018-0

PHENIX/FVTX Streaming FEE

384 Wedges 1.4M channel 3-bit flash ADC HDI 🚎 **FPHX Chip** 17k LVDS 768 fibers 3.2 Tb/s 1.9 Tb/s Ionizing Hit Sensor 24 Readout cards (ROC) Flash ADC & free streaming

Streaming data processing on FPGA for b-by-b luminosity & Transverse SSA (A_N)

PHENIX event builder / Data storage

Online display

Standalone data (calibration, etc.)

8 fibers

Data cable/bandwidth shown on this slide only

eRHIC and JLEIC key parameters at max Lumi points

design	eRHIC		JLEIC	
parameter	proton	electron	proton	electron
center-of-mass energy [GeV]	105		44.7	
energy [GeV]	275	10	100	5
number of bunches	1320		3228	
particles per bunch $[10^{10}]$	6.0	15.1	0.98	3.7
beam current $[A]$	1.0	2.5	0.75	2.8
horizontal emittance [nm]	9.2	20.0	4.7	5.5
vertical emittance [nm]	1.3	1.0	0.94	1.1
β_x^* [cm]	90	42	6	5.1
β_{y}^{*} [cm]	4.0	5.0	1.2	1
tunes (Q_x, Q_y)	.315/.305	.08/.06	.081/.132	.53/.567
hor. beam-beam parameter	0.013	0.064	0.015	0.068
vert. beam-beam parameter	0.007	0.1	0.015	0.068
IBS growth time hor./long. [min]	126/120	n/a	0.7/2.3	n/a
synchrotron radiation power [MW]	n/a	9.2	n/a	2.7
bunch length [cm]	5	1.9	1	1
hourglass and crab reduction factor	0.87		0.87	
peak luminosity $[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	1.05		2.1	
integrated luminosity/week [fb ⁻¹]	4.51		9.0	

FEE data rate

100kHz collision in continuous DAQ trigger In TPC DAQ simulation

All collisions

FEE -> DAM limit : 6 Gbps x 8b/10b per FEE

Reference design rate: 1.9 Gbps, far lower than limit

Max rate: 200kHz + 48 rings → max 7.2 Gbps @ module 1

Radiation map

