
Streaming readout
for an EIC detector

Chris Cuevas – presenting
Graham Heyes – wrote the talk (didn’t get any gelato)

Streaming readout workshop, GENOA
May 23rd to 24th 2019

Introduction
• Example on an EIC detector design.
• Why not use traditional pipelined triggered DAQ?
• Other considerations than just rates.
• How does streaming readout help?
• Example of a DAQ architecture.
• Dealing with the vertex detector
• Won’t it cost a lot?
• Where are we now?
• Summary.

Example EIC detector design
• Just counting labels on the diagram there are ~25 detector packages.
－Wide range of response times for the detector types.

• The largest single channel count is the Vertex Detector.

vertex

tracker

EMCAL TOF
DIRC

HCAL + muon

GEM

TOF

TOF

Dual RICH

Modular RICH

EMCAL

EM
CA

L HCAL + muon

HCAL + muon

EMCAL

GEM

HBD

GEMGEM

GEM/TRD

p/A
e

IP

e’

Solenoid

Dipole

TOF
DIRC

EMCAL

HCAL + muon

Channel counts
• Channel count is dominated by Vertex Detector
－Forward detectors ~120 k ch.
－PID ~700 k ch.
－HCAL ~20 k ch.
－EMCAL ~15 k ch.
－Tracking ~150 k ch.
－Vertex 20-50 M ch.

• Non-Vertex Detector channel count ~1M channels.

What happens if we use traditional DAQ - crates
• Back of the envelope calculation ignoring the

elephant in the room, the Vertex detector.
• The rest of the detector is ~1M channels.
－CLAS12 : ~90k channels read by 100 ROCs
－GLUEX : ~40k channels read by 50 ROCs
－Average ~1 ROC per 1000 channels, seems

like a lot of channels per ROC but is
dominated by high channel count detectors.
－EIC detector would be ~1,000 ROCs.

• Here a “ROC” is abstract, could be a real crate
or could be something that interfaces with
several detector mounted cards.
－We need to distribute triggers to 1000 devices.
－We could have up to 1000 devices

contributing signals to the trigger.
• Don’t forget the elephant.

T
S

S
S
P

S
S
P

DATADATA

V
T
P

V
T
P

Trigger
data

Trigger

DULL edgeDULL edge

DULL edgeDULL edge

DULL edgeDULL edge

Rade Disks

Trigger

DATA

DATA

DATA

Event builder

Trigger

Readout
Controllers

Level 3 trigger

Event recorder

Nearline storage

What happens if we use traditional DAQ - rates
• Beam crossing frequency 500 MHz
－Interaction rate 20MHz – 50MHz.
－Assume trigger survival rate 100 kHz

(Similar to GLUEX) = factor of 500 cut.
• Assume average 1% occupancy.
－Vertex detector rate ~240 GB/s. (yes bytes)
－Rest of the detector ~5 GB/s total.

• Fair agreement with CLAS12 and GLUEX if
we were to scale them up to 100 kHz and
1% of 1M channels.

• 5 GB/s is a lot of data but manageable
with four or five event builders running in
parallel.

• Don’t forget the 240 GB/s elephant
though.

T
S

S
S
P

S
S
P

DATADATA

V
T
P

V
T
P

Trigger
data

Trigger

DULL edgeDULL edge

DULL edgeDULL edge

DULL edgeDULL edge

Rade Disks

Trigger

DATA

DATA

DATA

Event builder

Trigger

Readout
Controllers

Level 3 trigger

Event recorder

Nearline storage

OK, so about the elephant
• How would you read out a detector that

generates 250 GB/s ?
• The only way that even remotely makes

sense is massive parallelism.
－Split the detector into small regions and read

those out in parallel.
－No sensible way to sync the different regions in

real time without spending a lot on electronics.
• Aim to reduce the rate to storage by using

data from the rest of the detector to define
regions of interest.
－Have to hold on to the Vertex Tracker data until

R.O.I. can be identified.
• Dealing with the Vertex Tracker dominates the

design of the DAQ.

Other considerations
• In a triggered DAQ we rely on:
－All subsystems getting the trigger and staying in sync.
－All subsystems being operational for the entire run.

• Often one of the hardest parts of operating a DAQ is starting and ending
data taking gracefully. The difficulty scales with the number of things that
have to be ready before you start.

• The frequency of undesirable events grows with the size of the system
and trigger rate – long data taking runs end with a crash.

• The mitigating factors that make a large system reliable are frequently
ones that also slow it down.

• A large percentage of diagnostic beam time is often labeled “trigger
studies”. Triggers at these rates are hard to implement.

Before the words Streaming Readout were uttered.
• The CODA DAQ system at JLab is governed by a state

machine.
－ Driven by commands issued by Run Control to every software and

hardware component.
－ On some state transitions ROCs insert maker events in the data.
－ Downstream components will not complete a transition until they

see the matching event.

• Problem - A state change requires both a command from run
control and correct marker event from upstream
components.

• Solution:
－ Trigger marker events by Trigger Supervisor hardware just like a

regular event.
－ Make components virtually stateless, RC no longer issues

commands to anything except the trigger.
－ DAQ data flow is controlled by the data itself.

－ i.e. EB performs it’s prestart tasks when it receives the prestart
event not via a prestart command.

－ This leads to a much simplified system.

• This is natural for a streaming DAQ.

Booted

OK?

OK?

OK?

Prestarted

Active

Configured

OK?

Confiigure

Download

Start/Stop

OK?

Prestart

Go

End

Fail

Fail

Fail

Fail
Fail

Any state

Reset

…

En
d

ev
en

t
Ph

ys
ic

s
N

Ph
ys

ic
s

5
Ph

ys
ic

s
4

U
se

r e
ve

nt
Ph

ys
ic

s
3

Ph
ys

ic
s

2
Ph

ys
ic

s
1

G
o

ev
en

t
Pr

es
ta

rt
ev

en
t

Time

How does streaming RO help?
• In a streaming system the trigger is minimal and mostly at the

detector level to reduce noise.
－Many sync problems disappear since we do not demand that all

detectors participate in a trigger.
－We still need timing but this is a simpler problem. One board

losing timing does not stop the whole DAQ.
• Since streams are essentially independent…
－Problems that would otherwise cause us to end a run are

confined to one stream. We could recover from problems without
ending a run – important in a very large system.
－New detectors can be added and debugged in parallel without

impacting data taking.
• Streaming readout is driven by a clock distribution system this

gives hardware control of data flow and leads to a much
simpler run control system.

Putting it all together

• For a single detector
－Front end hardware on detector digitizes signals.
－Point-to-point fiber or copper links to Front End buffer/preprocessor.

• Fixed latency, prevents data loss.
• Derandomizes after per channel zero suppression.
• Further zero suppress, formatting, compression, etc.

• Multiple detectors are connected via switched network.
• Processing on a back end cluster with access to buffered data.

Switched
Network Online buffer

VERTEX Detector

Detector FE HW

Front end
Buffer
and

preprocess

Detector FE HW

Detector FE HW

Detector FE HW

Switched
Network

Back end
preprocess

VERTEX Detector

Detector FE HW

Front end
Buffer
and

preprocess

Detector FE HW

Detector FE HW

Detector FE HW

Detector

Detector FE HW

Front end
Buffer
and

preprocess

Detector FE HW

Detector FE HW

Detector FE HW

Greta example

• Greta at FRIB – design using streaming readout well
underway.

• 120 UDP streams, each corresponding to a detector crystal,
－Aggregate (maximum) rate is 4 GB/s.
－Possibility of load asymmetry of up to 7:1

• Concept is more or less identical.

Dealing with the Vertex detector

• Vertex Detector is read in parallel streams into online buffers.
－ Say 25 front end buffers at 10 GByte/s (Using today’s 100 Gbit/s HW).
－ Main Online buffer is 25 nodes with 1TB of memory each ~100s buffer time.

• Rest of detector is read in parallel streams to a smaller online buffer.
－ Say 5 GB/s total – single 1TB buffer ~200s buffer time.

• Process data from rest of detector to identify regions of interest in Vertex Detector.
－ 4 D regions = 3D volume in detector and a timestamp range.

• Send regions and associated data from rest of detector to Vertex Detector back end processors that
pull data from Vertex online buffer. Unwanted vertex Detector data is discarded – much reduced rate
out.

250 GB/s
Switched
Network

25 TB
Online buffer

VERTEX Detector

Detector FE HW

Front end
Buffer
and

preprocess

Detector FE HW

Detector FE HW

Detector FE HW

Switched
Network

Back end
preprocess

5 GB/s
Switched
Network

1 TB
Online buffer

Rest of the Detector

Detector FE HW

Front end
Buffer
and

preprocess

Detector FE HW

Detector FE HW

Detector FE HW

Switched
Network

Back end
preprocess

Vertex Detector

Rest of Detector

Buffer

Buffer

Process

Alternative view
• An alternative view of the design

is a segmented readout.
－Data from each segment is

confined in its own streams.
－Each stream is buffered in its own

set of buffers.
• The processing layer contains

processing node that:
－Process data from buffers in the

same segment.
－Communicate with processing

nodes to the left and right. (For
example to follow tracks that curl
across several segments.

• Actual topology can vary.

Isn’t it going to cost a lot?
• There is no global trigger hardware.
• The detector front-end hardware is needed no matter what the DAQ

architecture.
• What are called front end buffer preprocessor cards are essentially the

VTP cards used in the GLUEX and CLAS12 DAQs. These would be
needed in a conventional DAQ.
－We would add more input ports, higher bandwidth and deeper buffering.
－We are also looking at commercial options.

• Networking switches able to handle EIC rates are commercially
available now, cost should come down and performance go up.

• We can buy compute nodes with high bandwidth and 1TB of random
access storage for about $15k now.
－In a regular DAQ we would be buying nodes for event building.

• The processing layer nodes are essentially a Level 3 farm.
－We would have this no matter what the DAQ architecture.

• The existence of commercially available, and affordable, networking and
computing hardware, plus reliable software support, that is making
streaming readout attractive. In the past a trigger was required to cut
rates to something that affordable hardware could handle.

So where are we now?
• In the DAQ design presented a few slides ago key elements are.

－ A data source outputting on fiber.
－ A front end buffer with FPGA.
－ A high speed low latency network.
－ An online compute resource to buffer and process data.

• In the INDRA lab at JLab we have put together a test stand using
－ a VETROC TDC to provide a Front End data source
－ A Xilinx Kintex UltraScale FPGA KCU1500 PCI board as a front end buffer and preprocessing device.
－ A Linux PC, with 100 Gbit/s network link as the online buffer and back end processing node.
－ See William Gu’s talk.

250 GB/s
Switched
Network

25 TB
Online buffer

VERTEX Detector

Detector FE HW

Front end
Buffer
and

preprocess

Detector FE HW

Detector FE HW

Detector FE HW

Switched
Network

Back end
preprocess

5 GB/s
Switched
Network

1 TB
Online buffer

Rest of the Detector

Detector FE HW

Front end
Buffer
and

preprocess

Detector FE HW

Detector FE HW

Detector FE HW

Switched
Network

Back end
preprocess

Summary
• At the rates that we expect from an EIC detector the DAQ

architecture has to be highly parallel. The back end hardware
required is similar whether we stream or don’t.

• Streaming advantages:
－No complicated global trigger.
－Parallel by default so high and scalable bandwidth.
－Streams are effectively independent

• Adds fault tolerance.
• Decreases system complexity.
• Allows detectors to be run independently.

－System is data driven – less complex run control.
－System is defined by software and configuration both of which

can easily be changed.

La fine

grazie per aver ascoltato la mia presentazione

