
Protocol prototypes and some thoughts about
software

Jan C. Bernauer

SRC workshop IV, May 2019



A first pass at a protocol
Early April, Dimitri, Markus and I met at BNL:

2



Structure and Rational

A constant start byte (0xAA) to resynchronize
24 bit unsigned int for block size
32 bit unsigned int for channel id
48 bit unsigned int for coarse frame time

We think an (approximately) absolute time would be very
helpful.
Assuming 32 bit fine times at ps resolution (=4ms), we
can cover 38k years with 48 bit. Could reduce to 40 bit
and have 8 bit flags?)

32 bit aligned semi-opaque payload
32 bit unsigned int for fine time (ps level)
32 bit aligned detector specific hit data.

32 bit unsigned int for checksum

3



Things I learned/thought about while implementing this

It’s way too long I have written C/C++ code. Needs to
change.

C bitfield layout is compiler implementation specific. Can be
managed, but maybe as awkward as using bit shifts/masks...
We might want to get rid of the checksum on-wire, but
certainly not on-disk.
We need a sequence number so we can reorder efficiently.

24 sequence number as first field.
Promote block size to 32 bit.

We are only word aligned. Could add short for more flags /
version / data pitch.
At full frame size, we have an overhead of 5kByte/s per
channel.

4



Things I learned/thought about while implementing this

It’s way too long I have written C/C++ code. Needs to
change.
C bitfield layout is compiler implementation specific. Can be
managed, but maybe as awkward as using bit shifts/masks...

We might want to get rid of the checksum on-wire, but
certainly not on-disk.
We need a sequence number so we can reorder efficiently.

24 sequence number as first field.
Promote block size to 32 bit.

We are only word aligned. Could add short for more flags /
version / data pitch.
At full frame size, we have an overhead of 5kByte/s per
channel.

5



Things I learned/thought about while implementing this

It’s way too long I have written C/C++ code. Needs to
change.
C bitfield layout is compiler implementation specific. Can be
managed, but maybe as awkward as using bit shifts/masks...
We might want to get rid of the checksum on-wire, but
certainly not on-disk.

We need a sequence number so we can reorder efficiently.
24 sequence number as first field.
Promote block size to 32 bit.

We are only word aligned. Could add short for more flags /
version / data pitch.
At full frame size, we have an overhead of 5kByte/s per
channel.

6



Things I learned/thought about while implementing this

It’s way too long I have written C/C++ code. Needs to
change.
C bitfield layout is compiler implementation specific. Can be
managed, but maybe as awkward as using bit shifts/masks...
We might want to get rid of the checksum on-wire, but
certainly not on-disk.
We need a sequence number so we can reorder efficiently.

24 sequence number as first field.
Promote block size to 32 bit.

We are only word aligned. Could add short for more flags /
version / data pitch.
At full frame size, we have an overhead of 5kByte/s per
channel.

7



Things I learned/thought about while implementing this

It’s way too long I have written C/C++ code. Needs to
change.
C bitfield layout is compiler implementation specific. Can be
managed, but maybe as awkward as using bit shifts/masks...
We might want to get rid of the checksum on-wire, but
certainly not on-disk.
We need a sequence number so we can reorder efficiently.

24 sequence number as first field.
Promote block size to 32 bit.

We are only word aligned. Could add short for more flags /
version / data pitch.

At full frame size, we have an overhead of 5kByte/s per
channel.

8



Things I learned/thought about while implementing this

It’s way too long I have written C/C++ code. Needs to
change.
C bitfield layout is compiler implementation specific. Can be
managed, but maybe as awkward as using bit shifts/masks...
We might want to get rid of the checksum on-wire, but
certainly not on-disk.
We need a sequence number so we can reorder efficiently.

24 sequence number as first field.
Promote block size to 32 bit.

We are only word aligned. Could add short for more flags /
version / data pitch.
At full frame size, we have an overhead of 5kByte/s per
channel.

9



Large packets

A frame can be up to 16 Megabytes.
We might want to interleave on smaller time-scales / buffer
depth

Could do wrapping layer which chops up a stream into (fixed
size?) packets. Similar to MPEG TS/PS.

10



Large packets

A frame can be up to 16 Megabytes.
We might want to interleave on smaller time-scales / buffer
depth
Could do wrapping layer which chops up a stream into (fixed
size?) packets. Similar to MPEG TS/PS.

11



Development at JLAB: Hardware

(See Ben’s talk)
Work on FADC firmware for pulse extraction to forward to
VTP (and then 10GbE)
Work on VTP firmware to use DDR3 memory to buffer 128
Gbps (burst) input streams.
C++ on FPGA implementation for TCP streaming (connect
to zMQ)
Some debug work on ethernet/TCP stack.

12



Development at JLAB: Software/Network

Data source: Sends data from file/detector simulation over
network with efficient packing.
Streamer router: Receives data from source(s), measures
statistics and re-broadcasts via ZeroMQ.
Sink: Receives data from the Streamer router via ZeroMQ.

Data rates of up to 6 GBytes/s have been achieved in the INDRA
lab. Streamed data from the VETROC TDC system.

13



Development at JLAB: Software/JANA

Python simulation of ADC/TDC data from SAMPA (without
zero suppression)
Converter to JANA events (each event = one time window)

Next steps: Combine these tasks for end-to-end solution.

14



Message passing or streams?

Natural streams, but work distribution etc. chops the streams
up for parallel processing.

A packet-oriented or message-passing interface suits this.
ZeroMQ is big player, but others exists (nanomsg, nng).
(Also interesting: libfabric, DPDK)

15



Message passing or streams?

Natural streams, but work distribution etc. chops the streams
up for parallel processing.
A packet-oriented or message-passing interface suits this.
ZeroMQ is big player, but others exists (nanomsg, nng).
(Also interesting: libfabric, DPDK)

16



Things to check for zMQ/nanomsg

Can we use one of these even for FEE?
PIPELINE mode promises N:M work distribution! Check how
well that works.
How much overhead on the wire?
Stable? Future proof?

17



Node configuration / naming of channels
Nodes bring-up, especially FEE, needs basic configuration
(network address, etc.)
Probably will use DHCP/BOOTP/DNS for this.
Since each node knows it’s data formats, node should tell
orchestrator. Maybe use DNS records (SRV,TXT)?
Need mapping of channel name to channel-id. Can we
auto-generate?

32bit is probably enough to enumerate all channels in
even a big system.
Could hash names to produce id.
Could autogenerate names of process nodes by hash(input
channel names + operator name).
But with 32 bit, birthday problem limits to few k channels
before hash collision.
Is that a problem? Do we want to go to 64 or 128 bits
(IPv6) bits?

18


