
Thomas Jefferson National Accelerator Facility Page 1

Benjamin Raydo

Electronics Group (Physics Division)

FADC250 Streaming over

Ethernet using TCP/IP

May 23, 2019

Thomas Jefferson National Accelerator Facility Page 2

TCP/IP FADC Readout Goals

• Satisfy LDRD commitment

– Demonstrate a streaming DAQ based on the Jlab FADC250 & VTP hardware

• Create a viable streaming readout option based on existing Jlab hardware

– Makes it easier for existing DAQ hardware in streaming mode without throwing away a lot

of hardware they already have

– Get existing users of Jlab DAQ hardware experienced using streaming DAQ modes

• Use as a testbed to help determine future streaming DAQ needs

– Jlab FADC250 is fairly generic and can be used to emulate ASIC options in beam test

setups

The goal does not include using this implementation as a solution if we must

build/purchase new hardware!

Thomas Jefferson National Accelerator Facility Page 3

JLAB DAQ Crate: FADC250

VXS Backplane

• 21 Slots: 2 VXS switch, 18 VXS/VME payload, 1 VME

• VME CPU for event readout (up to 200MB/s)

• 16 VXS payload slots for front-end modules

• FADC250 crate configuration shown

– 16 channels per module, 256 channels per crate

– 12b resolution, 250MHz sample rate

– 10 to 20Gbps from each FADC250 module to VTP module

for triggering

• VTP Trigger Module

– accepts up to 320Gbps from 16 FADC250 modules

– 4x QSFP trigger outputs (34Gbps due to -1 FPGA)

– 1x 40GbE QSFP (or 4x 10GbE)

– 4GByte DDR3 (200Gbps bandwidth)

FADC250 DAQ Crate

FADC250: VTP:

Thomas Jefferson National Accelerator Facility Page 4

FADC250 Waveforms

Typical pulses digitized by the FADC250 modules

(CLAS12 FT Calorimeter cosmic pulses)

Thomas Jefferson National Accelerator Facility Page 5

FADC250 Feature Extraction

Readout Path (only runs when triggered)

• Raw samples around threshold crossing

• Charge & coarse time (4ns leading-edge)

• Charge & high resolution time (62.5ps constant-fraction)

Trigger Path (continuously running)

• Charge & coarse time (4ns leading-edge)

For the FADC250 streaming readout test, only “Trigger Path” is planned for

test (which means no FADC250 firmware changes are necessary at the

moment). Supporting other feature extraction methods can be done later

(which currently isn’t the main focus of the FADC250 streaming readout at the

moment)

Thomas Jefferson National Accelerator Facility Page 6

Firmware Development

FADC250 – no firmware development needed

• Reusing trigger path, which discriminates and provides pulse time and charge

VTP – nearly all firmware completed

x16 FADC250

Streams

(256 channels)

Zero

Suppression

128Gbps

(16x 8Gbps)

multiplexor

4Gbyte DDR3
Event

Builder

10Gbps Ethernet

(TCP) Stream

10Gbps Ethernet

(TCP) Stream

2x10GbE Optical Links

(up to ~500M FADC Hits/s)

16x FADC 8Gbps streams, each:

• 16 channels

• 32ns double pulse resolution

• 4ns leading edge timing

• Pulse integral

Large buffer:

• 200Gbps bandwidth

• Allows high burst rates

• (doesn’t need to be this big, but it’s what the

hardware has, so might as well use it)

TCP Stack:

• Hardware accelerated

• Up to 4 links can be used

• Could be a single 40GbE (if we could afford

the TCP stack IP – not worth it for R&D)

VTP FirmwareFADC Firmware

Thomas Jefferson National Accelerator Facility Page 7

“Event Builder”

The “Event Builder” is just building a message to send over TCP that contains all

FADC hits corresponding to a programmable time window

• A programmable window can be set from: 32ns up to 524288ns

• All FADC hits with timestamps falling within its time window are packaged in a

TCP message and sent

• An ‘end of frame’ flag tells the event builder when no more hits will arrive so it

can send the message without further delay

Thomas Jefferson National Accelerator Facility Page 8

FADC Message Format

JLab Graham’s “stream_buffer” header is used to wrap the message, making it compatible

with his ZeroMQ messaging system: typedef struct stream_buffer {

uint32_t source_id;

uint32_t total_length;

uint32_t payload_length;

uint32_t compressed_length;

uint32_t magic;

uint32_t format_version;

uint64_t record_counter;

struct timespec timestamp;

uint32_t payload[];

};

The FADC hit information is defined within the payload[] element of the above structure:

• First payload word is the fadc_header, followed by 1 or more fadc_hit words:

• Additional fadc_header and fadc_hit words may follow

• This is a fairly simple format that in the future would be expanded to handle higher

resolution/dynamic range charge & time as well as raw waveform sampling.

typedef struct fadc_header {

uint32_t slot:5; // 3 – 20 (slot number)

uint32_t reserved0 : 10; // 0

uint32_t payload_type : 16; // 0x0001 (fadc hit payload type)

uint32_t header_flag : 1; // 1 (this is a header)

};

typedef struct fadc_hit {

uint32_t q : 13; // pedestal subtracted & gained “charge”

uint32_t ch : 4; // 0-15 channel number

uint32_t t : 14; // 0 – 16363 hit time (in 4ns steps in window)

uint32_t header_flag : 1; // 0 (not a header)

};

Thomas Jefferson National Accelerator Facility Page 9

Current Test Setup

Current test setup sits in my office:

• Small VXS Crate

• 1 FADC250

• 1 VTP

• Old PC w/10GbE (Mellanox ConnectX-3)

Will move to INDRA-ASTRA lab soon

• Expanding to 16 FADC250 modules

• High performance servers

4x 10GbE

VTPFADC250

Thomas Jefferson National Accelerator Facility Page 10

Simulation Performance of TCP/IP VHDL Stack

Testbench consists of a hardware accelerated TCP client and server instance.

Each sends data as fast as is can to the other.

• On TCP client sender, the TX sequence number and RX acknowledgement

numbers are plotted: Slow startup Steady state

TX SEQ

RX ACK

Round trip delay = 22us

• 10µs added to each TX->RX, in

attempt to overestimate delay on

PC setup (that’s 20µs of the

shown round trip delay)

• VHDL stack only running with

32kBytes of TCP TX buffering.

Reduction in bandwidth if round

trip latency exceeds ~25µs

• TCP Ethernet rate: 9.4Gbps

Used RX window = 28k

Thomas Jefferson National Accelerator Facility Page 11

Performance of TCP/IP VHDL Stack sending to PC

Previous simulation rates measured would be absolutely correct if the FPGA

accelerated TCP stack was used on both ends in the actual setup (realistically

this is an option), but for now we’re focused on using a typical Linux PC (RHEL7

64bit) to receive the TCP stream from a HW accelerated TCP stack:

• Once again, the sender sends as fast as possible

• On the PC, the RX rate is measured: ~480MB/s

• That’s only 3.8Gbps!

• Ping is showing latency slightly past the point

were bandwidth will be reduced – ping is also

less protocol layers and likely is faster than

actual TCP processing

Thomas Jefferson National Accelerator Facility Page 12

TCP SEQ & ACK on PC

Similar to FPGA simulation showing TCP TX SEQ and RX ACK numbers, this can

be measured on the PC (not ideal, but still is useful):
• Slope of the measurement indicates 3.6Gbps

• RX DATA Chunk slope is much higher (probably

>9Gbps)

• You can see that RX DATA Chunks never fill past

32kByte of the window – it stops and waits until

the RX ACK increments…So this confirms the

32kByte TCP TX Buffer is causing the slow down,

but this is also a result of the large latency

• Strangely a 1GbE NIC card on the same machine

gives a ping of <=10µs when talking to a similar

FPGA TCP stack, making me suspicious of the

10GbE driver or settings

• In any case, we’ll likely look at increasing the TX

buffer size to deal with this issue.

TX SEQ

(max allowed)

RX ACK

RX DATA

Chunk

RX window = 65k

Thomas Jefferson National Accelerator Facility Page 13

Scheduling…

Got a slow start on this so far due to CLAS12 operations…

• ~1 week of effort done so far in FY2019

• Here’s what’s been done so far:

– FPGA TCP/IP hardware accelerated stack running for 10GbE interface

• Still some reliability & performance issues here, but doesn’t prevent remaining

testing/development

– FADC decoding, buffering, “event” formatting code written (not tested in hardware)

• What’s needed to be finished:

– Tie together TCP/IP interface to FADC “event” buffering

– Write some scripts for automate configuration for testing

– Test, debug, measure performance limitations

Thomas Jefferson National Accelerator Facility Page 14

Conclusion

• TCP hardware accelerated stack is probably one of the trickier

parts that luckily we have a vendor providing. We have found a

number of issues with the IP, but the vendor has been working with

us to resolve them – shouldn’t prevent us from reach test goals.

• Delays on my part due to CLAS12 & HPS experiment preparations,

but these will be complete in the next few weeks so I can actually

spend good time to wrap up this project!

• Making progress towards FADC250 crate streaming over Ethernet

using TCP – expected to have a functional demonstration this

summer!

Thomas Jefferson National Accelerator Facility Page 15

