

BDX Digitizer's Streaming Readout architecture

Fabrizio Ameli

INFN - ROMA

Outline

- BDX experiment requirements
- Streaming Readout DAQ
 - The Digitizer Board
 - Description
 - Characterization
 - Trigger architecture
- Conclusions
 - Trigger-less benefits

The Beam Dump experiment

- High light yield of searched events
 - ~5 phe threshold
 - SiPM noise is under threshold
 - hit amplitude is O(100 mV)
- Hit timing properties:
 - duration: $O(10 \mu s)$
 - bandwidth: O(10 MHz)
 - rate @ 5 phe threshold: O(10 Hz)

From front-end to DAQ

- DAQ architecture and front-end inherited from **KM3NeT** experiment:
 - Trigger-less front-end system:
 - ADC sampling (14 bit, 200MHz \rightarrow 250MHz)
 - zero-suppression (L0 trigger) @ 0.3 p.e. threshold
 - sampling window is time-variable
 - all non-zero data forwarded (all data to shore)
 - Trigger-less Data Acquisition System (TriDAS)
 - Scalable Event Building architecture
 - DAQ scalability relies on network scalability

From front-end to DAQ

- DAQ architecture and front-en
 - Trigger-less front-end system:
 - ADC sampling (14 bit, 200MHz →
 - zero-suppression (L0 trigger) @ C
 - sampling window is time-variable
 - all non-zero data forwarded (stre
 - Trigger-less Data Acquisition Sy
 - Scalable Event Building architectu
 - DAQ scalability relies on **network**

The WaveBoard digitizer board

 The board is based on a Commercial-Off-The-Shelf (COTS) System On Module (SOM) mezzanine card hosting a Zynq-7030

- There are 12 analog front end channels
 - 6 dual-channel ultra low-power ADCs (12/14 bit up to 250MHz)
 - Pre-amplifier on board: **selectable gain** (either 2 or 50)
 - HV provided and monitored on-board
 - pedestal set by DAC
- Timing interfaces:
 - PLL to clean, generate, and distribute clocks
 - External clock and reference signals
 - White Rabbit enabled board
- ARM-M4 controls on-board peripherals (ADCs, DACs, PLL, ...)
- On board peripherals:
 - High speed: GbE, SFP, USB OTG
 - Low Speed: serial, I2C, temperature monitor

Single Channel Front End w/ High Voltage

Trenz Electronics - TE0745 - Pluggable SOM

- K7-Based Zynq
- Zynq-7030/7035/7045
- DC/DC onboard
- •1GB DDR3
- •32 MB SPI Flash
- •1 Gb Ethernet PHY
- USB 2.0 PHY
- I2C, RTC, EEPROM (MAC)
- •250 I/O pins + 6 MIO
- I/O banks power from connector

Board features: Interfaces

• High Speed interfaces:

- 1 x GbE connector (PS driven)
- 1 x SFP connector (PL driven)
- 3 SATA connectors
- 1 x USB On The Go
- High Speed Samtec expansion connector
- Boards can be easily daisy chained using FPGA MGTs on SATA connectors.

• Low speed interfaces:

- 2 serial ports
- 1 I2C bus
- 1 USB
- 1 daisy chainable temperature sensor

SFP E/O

1 GbE

Board features: Power

- Linear regulators dedicated to analog front-end supplies (+5V and -5V)
- Dedicated 1.8V linear regulator per FastADC
- VME connectors only for power and mechanical support
- SiPM High Voltage up to 90V provided on-board
- Power consumption:
 - 2.3A @5V Total power ~17.5 W
 - 0.5A @ 12V

Digital Supplies

1.8V, 3.3V

1.8V FastADC Linear Regulator Analog Supplies (+5V, -5V)

Board Cost

- Board cost is adjustable according to project requirements:
 - Use the right ADC: price ranges from 9 to 65 €/channel
 - Choose the right SOM: 500€ to 780€

Total cost ranges from 1.3k€ to 2.1k€ per board

Digitization example: BDX crystal read by SiPM

DAQ Setup Procedure

- Set over and under thresholds
- Set Leading samples number
- Set Trailing samples number

Acquisition Process

- Time stamp is set on first over threshold sample
- A packet with channel ID, charge, time stamp and samples is pushed through Ethernet interface
- Dead time happens when output link speed is too low wrt hit rate

- The board can provide High Voltage to power sensors (typically SiPM)
 - HV is AC-coupled to sensor signal
 - up to 90V on-board generation
 - HV is linearly regulated (accepted input up to 100V)
 - Range is from 25 to 75V, DAC selectable
- Changing HW configuration, the same circuit can control a HV generator (e.g. PMT HV base can be set by a control voltage ranging from 0 to 2V)

- High Voltage set to 25V:
 - Values read by Voltmeter and on-board ADC
 - Channel average error: 0.2%

- High Voltage set to 75V:
 - Values read by Voltmeter and on-board ADC
 - Channel average error: 0.7%

- High Voltage set to 75V:
 - Values read by Voltmeter and on-board ADC
 - Channel average error: 0.7%

Pedestal estimation and Noise

- Channel Pedestal estimate: 1.6-1.9 ADC count (rms)
 - Calculated on 10⁵ samples
 - Input is Open
 - No HV generated

Pedestal estimation and Noise

- Channel Pedestal estimate: 2.2-2.6 ADC count (rms)
 - Calculated on 10⁵ samples
 - Input is Open
 - HV generated

Timing test bench setup: clock quality

RIGOL DG5052 10 MHz Gen

- Input clock from generator: 10 MHz
- Input clock is jitter-cleaned and multiplied by a factor 25 by on-board PLL
- Jitter performance measured with E5052B-Signal Source Analyzer

=== = delen E5052B SSA

VME Crate w/ Board UT

Timing test bench setup: clock quality

Input clock from generator: 10 MHz

• Input clock is jitter-cleaned and by a factor 25 by on-board PLL

 Jitter performance measured w E5052B-Signal Source Analyzer

Timing test bench setup: resolution

- Input is driven by a pulse generator (DTG5334)
 - Pulses period: 50 kHz
- Histogram of time differences between consecutive pulses
 - Linear interpolation of waveforms
 - The higher the amplitude, the better
 - Spline interpolation enhances resolution

Timing test bench setup: resolution

- Input is driven by a pulse generator (DTG5334)
 - Pulses period: 50 kHz
- Histogram of time differences between consecutive pulses
 - Linear interpolation of waveforms
 - The higher the amplitude, the better
 - Spline interpolation enhances resolution

Triggered architecture

• HW Trigger:

- Signal feature extraction
- Stream few data forward
- If level2 triggers: send all data forward

• Buffering:

Enough to cope with trigger latency

Detector sectioning:

Needed to implement local triggers

Event Selection:

Higher trigger levels

• HW DAQ:

- L0 trigger (Zero Skipping)
- Stream all data forward

Buffering:

Enough to cope with transmission link

Detector sectioning:

Not needed

- Time is divided into time slices
- Hits in the same time slice are forwarded to same trigger PC

• HW DAQ:

- L0 trigger (Zero Skipping)
- Stream all data forward

Buffering:

Enough to cope with transmission link

Detector sectioning:

Not needed

- Time is divided into time slices
- Hits in the same time slice are forwarded to same trigger PC

• HW DAQ:

- L0 trigger (Zero Skipping)
- Stream all data forward

Buffering:

Enough to cope with transmission link

Detector sectioning:

Not needed

- Time is divided into time slices
- Hits in the same time slice are forwarded to same trigger PC

• HW DAQ:

- L0 trigger (Zero Skipping)
- Stream all data forward

Buffering:

Enough to cope with transmission link

Detector sectioning:

Not needed

- Time is divided into time slices
- Hits in the same time slice are forwarded to same trigger PC

• HW DAQ:

- L0 trigger (Zero Skipping)
- Stream all data forward

Buffering:

Enough to cope with transmission link

Detector sectioning:

Not needed

- Time is divided into time slices
- Hits in the same time slice are forwarded to same trigger PC

Streaming readout: cons

- Less efficient in terms of total data rates
 - HW could be more demanding
- In some cases, data rates are so high that pushing all data is not feasible
- If LO discards data (ie hit is under threshold), data are lost!
 - If triggered systems apply LO, both approaches are equivalent

Streaming readout: HW benefits

- Flat Front End nodes hierarchy
 - FE nodes are **independent** from each other
 - Same minimal HW programming required for all nodes (no trigger, no feature extraction, no strict latency)
 - Unidirectional data flow
- Changing trigger doesn't change HW
- Connecting network should be based on commercial protocols/HW:
 - Ethernet network: low cost, wide availability, FPGA IP core support
 - Ethernet switches can be used as data concentrator

Streaming readout: DAQ benefits

- Trigger algorithm complexity moves into SW domain
- Trigger algorithms can be applied to the whole detector
- The architecture is scalable as long as the network is:
 - If trigger algorithm gets more and more complex, just add PCs
 - If FE rate gets higher (eg using lower thresholds), just add PCs
 - If FE nodes grow, just add more PCs

Thank you

BDX status

- Beam Dump experiment at JLab: search for Dark sector particles in the 1 ÷ 1000 MeV mass range.
 - High intensity ($\simeq 10^{22}$ EOT/year), high energy (11GeV) e- beam
 - Detector: ~800 CsI(TI) calorimeter + 2-layers active veto + shielding. Reuse BaBar crystals with improved SiPM readout.
- BDX can be ready to run within ~2 years
- Current experiment status:
 - Full proposal submitted to JLab PAC 44: conditionally approved
 - After PAC45 update, on-site background measurements and detector optimization studies
 - Presented update to PAC46 for approval

Timing: test bench setup

 Ref 10 MHz clock path: Generator Clock JItter

Board features: Power

- Linear regulators dedicated to analog front-end supplies (+5V and -5V)
- Dedicated 1.8V linear regulator per FastADC
- VME connectors only for power and mechanical support
- SiPM High Voltage up to 90V provided on-board
- Power consumption:
 - 2.3A @5V Total power ~17.5 W
 - 0.5A @ 12V

