
Data Processing for CLAS12
Gagik Gavalian (Jefferson National Laboratory)
EIC Streaming Readout, May 22 2019, Camogli

Introduction

!2

• If things worked well 20 years ago, we should follow the same path.

• Analysis tools that we used for past 30 years are just fine, why reinvent ?

• The data we are writing we can analyze with our existing tools, so what if it’s
1000 times larger data ?

CONVENTIONAL WISDOM

QUESTIONS
• Is computing evolving the same way it was 20 years ago ?

• Software architecture models have to change ?

• Do we need new approaches to data storage and distribution ?

Evolution of Computing

!3

Evolution of Computing

!4

• Major software engineering methods and tools
currently focus on sequential software
development.

• However, every developer is now confronted
with parallel programming applications such as
server applications.

• If application is not parallel performance can
not be improved by additional cores.

• As more cores are integrated on the same chip,
clock rates may decrease, sequential
applications will be slower with new processor
generation.

• The whole spectrum of software engineering - from design over testing to maintenance - has to be revisited in the
light of parallelism. Nondeterminism adds a new dimension of complexity.

• Many parts of the existing software stack require revisions, each providing challenges and opportunities for
parallelism exploration.

Service Oriented Architecture (SOA)

!5

MONOLITIC ARCHITECTURE

User Interface

Program Logic

Data Access

DB

SOA ARCHITECTURE

User Interface

Micro ServiceMicro ServiceMicro Service

DB DB DB

Monolithic Approach
Provides a program based on the libraries (API) to
accomplish a specific task. If different task had to
be performed one has to re-write the program.

SOA Approach
Provides Services that can do one specific task. User can build and application
by chaining services, and passing data through the chain and accomplishing
different tasks.

Service Oriented Architecture (SOA) (https://claraweb.jlab.org/clara/)

!6

• CLARA Framework aims to enhance the efficiency agility
and productivity PDP processes.

• CLARA is an approach to develop data processing
applications based on the concept of multiple asynchronous
processes (Services)

• The Application in CLARA is system of data streams being
transformed by multithreaded services.

• Service Composition is comprised of services that
have been assembled to provide functionality required
to accomplish a specific data processing task:

• Data Reconstruction

• Event filtering

• Kinematic Fitter

• CLARA makes a clear separation between the service
programmer and the data application designer.

• The Application is essentially asynchronous data passing
through selected services.

• The data transforms depending on the service.
• Application Orchestrator takes care of data flow

optimization depending on how many cores on the system.
• Application can also run on several machines and pass data

through network.
• Data passing is based on P2P technology and is agnostic

where the services run.

https://claraweb.jlab.org/clara/

CLAS 12 Detector

!7

• Drift Chamber inside Toroidal field for forward tacks.

• Electromagnetic Calorimeter for electron identification
and neutral particle detector.

• Time of Flight system for particle identification.

• High Threshold Cherenkov Detector for electron pion
rejection.

• Silicon tracker for central detector charged particle
tracking in Solenoidal Filed.

• Central Neutron Detector for neutron identification.

•>100K Channels
•DAQ data rate 12 kHz,
•Data rate 400 Mb/sec
•Up-to-Date collected ~1.2 Pb

DETECTOR COMPOSITION:

DATA ACQUISITION:

CLARA Data Processing

!8

R

EC FTOF DC FTC EB

EC FTOF DC FTC EB

EC FTOF DC FTC EB

W

ORCHESTRATOR

Data Flow Control
DATA PROCESSING ENVIRONMENT (DPE)

MEMORY

O
Orchestrator
Synchronizes the process on one node or on several
modes to process given number of files.

CLAS12 Data Processing (Vertical Scaling)

!9

R

EC FTOF DC FTC EB

EC FTOF DC FTC EB

EC FTOF DC FTC EB

W

ORCHESTRATOR
O

Orchestrator
Synchronizes the process on one node or on several
modes to process given number of files.

NO
DE

 1
NO

DE
 2

NO
DE

 3

Data Flow Control

CLAS12 Data Processing (Multi-Platform Scaling)

!10

R

EC FTOF DC FTC EB

EC FTOF DC FTC EB

EC FTOF DC FTC EB

W

ORCHESTRATOR
O

Orchestrator
Synchronizes the process on one node or on several
modes to process given number of files.

NO
DE

 1
NODE 2 NODE 3GPU

Data Flow Control

CLAS12 Data Processing

!11

HASWELL
BROADWELL
BROADWELL (affinity)

98.9% parallel

Amdahl's law
gives the theoretical speedup in latency of
the execution of a task at fixed workload that
can be expected of a system whose
resources are improved.

p - is the percentage of the execution
time of the whole task concerning the
part that benefits from the
improvement of the resources of the
system before the improvement.
s - is the speedup in latency of the
execution of the part of the task that
benefits from the improvement of the
resources of the system

Thread Affinity
Operating system forces the thread
to run on one specific core without
changing to the available idle
cores. Switching requires data to
move along with the process
causing slow down.

CLAS 12 Detector vs CLAS

!12

• CLAS12 First Experiment collected ~50x more data
than longest experiment in CLAS6 era (~1.12 PB)

• Data Summary tapes are ~100x larger (45 TB)
than G11 experiment (on the graph compressed
size is shown)

DATA SIZES:
DATA

0 300 600 900 1200
CLAS-6 (G11) CLAS-12 (RG-A)

DST

0 12.5 25 37.5 50
CLAS-6 (G11) CLAS-12 (RG-A)

CLAS 12 Data Format

!13

• CLAS12 Software is in JAVA. We need data format that has read/write from JAVA (ROOT is not an option).

• Industry has many data formats for JAVA (Apache Avro, LCIO, HDF5).

Software Architecture:

Existing Formats:

•EVIO was used in DAQ (has C++/Java interface) and was decided to be used in reconstruction
• No compression

• No random access

• No support for large (>2GB) files (in Java API)

• No efficient chunk reading (can bring down LUSTRE disks)

• ROOT is widely used in final physics analysis:

• No Java interface

HIPO Data Format (File Format)

!14

FILE HEADER

FILE FOOTER

DATA RECORD

USER HEADER

…………..

INDEX ARRAY

DATA EVENTS

Data Record
Compressed buffer of data consisting of events and index.
Record header provides number of events and the TAG for the
record. (Data records are typically ~8 MB. Configurable to any
size)

User Header
Contains information about the record dictionary,
format. User specified parameters related to conditions of the
experiment.

Index Array
Array of event offsets inside the event buffer.
Dynamically creates event random access table.

FILE FOOTER
Contains positions of every record in the file with number of
events for fast random access. Also has tags for each Data
Record.

CLAS 12 Data Flow

!15

DAQ

DECORER
EVIO

(HIPO soon) RECONSTRUCTION
HIPO

TRAIN
FILTERED
OUTPUT
FILTERED
OUTPUT
FILTERED
OUTPUT
FILTERED
OUTPUT

ROOT

ROOT

ROOT
DST

ROOT

DST
HIPO

CLAS 12 Detector

!16

ROOT

AVRO

SNAPPY

HIPO

0 17.5 35 52.5 70
Data Size (AU) Read Time (sec)

HIGH PERFORMANCE OUTPUT (HIPO):
• HIPO data format was implemented for CLAS12

• Dictionary driven data format with Schema evolution.

• Fast compression algorithm (LZ4)

• Chunked data frame implementation to support multithreaded applications.

• Event chunk tagging and indexing to allow reading selective types of events from Data Summary Tapes.

• Deserialization performance better than most commonly used data formats in Nuclear Physics.

• Faster than industry standard data types.

CLAS 12 Data Flow

!17

DAQ

DECORER
EVIO

(HIPO soon) RECONSTRUCTION
HIPO

TRAIN
FILTERED
OUTPUT
FILTERED
OUTPUT
FILTERED
OUTPUT
FILTERED
OUTPUT

ROOT

ROOT

ROOT
DST

ROOT

DST
HIPO

4 Days

10 Days

CLAS 12 Data Flow

!18

DAQ

DECORER
EVIO

(HIPO soon) RECONSTRUCTION
HIPO

TRAIN
FILTERED
OUTPUT
FILTERED
OUTPUT
FILTERED
OUTPUT
FILTERED
OUTPUT

HIPO

HIPO

ROOT
DST

HIPO

DST
HIPO

1 Days

Data Formats

• Conventional data formats write data event after
event as they come out from reconstruction.

• Each event has different topology of final state.

• Not all events are useful for given analysis.

• User has to read entire data set to determine
which events are useful for his analysis.

• Not suitable for big data.

!19
59.7% Trigger particle is not an electron.

No electron Forward Tagger. 25.6% Electron trigger.
Forward Detector 14.7% Forward Tagger

No Electron in ECAL

CONVENTIONAL APPROACH
• HIPO data format is record based format with full

indexed file structure.

• Records are tagged according user given criteria.

• Reading specific tags from data file is possible.

• Filtering data does not require parsing events in
the records, so each skimming operation is on the
level of disk IO.

NEW APPROACH

EVENT TOPOLOGY FROM CLAS12 (RUN #3856)

Conclusion

!20

•CLARA modernized the reconstruction software, provided tools for parallelization.

• The reconstruction code is now flexible, maintainable and easily debuggable. Users can develop their
own versions of reconstruction code and run along with entire software.

•User analysis codes such as filtering events by event topology and kinematic fitting are also done
using CLARA service oriented approach.

PARRALEL DATA PROCESSING

•HIPO data format improved the data storage for CLAS12, providing flexibility to have large files.

• Indexing and tagging mechanism in HIPO allows users to read only events of interest, without putting
strain on file system, and made skimming into separate files thing of the past.

DATA FORMATS

ANSWERS:

•Computing development took a different route towards parallelization.

•We need more modern approaches to software architecture.

•With increasing data sizes of nuclear physics experiments, we have to re-think data storage and formats.

BACKUP SLIDES

!21

