

kvi - center for advanced radiation technology

Streaming readout for the PANDA experiment

M. Kavatsyuk

KVI-CART, University of Groningen

for the PANDA collaboration

AntiProton Annihilation at DArmstadt (PANDA)

PANDA at FAIR

Precision antiprotons: High Energy Storage Ring (HESR)

High resolution mode:

- e⁻ cooling: p<8.9 GeV/c
- 10¹⁰ antiprotons stored
- Luminosity up to 2x10³¹ cm⁻² s⁻¹
- dp/p = $4x10^{-5}$

High intensity mode:

- Stochastic cooling: p<15 GeV/c
- 10¹¹ antiprotons stored

(10¹⁰ phase 1+2)

- Luminosity up to $2\hat{x}10^{32}$ cm⁻² s⁻¹
- dp/p = $2x10^{-4}$

The PANDA detector

- 4π acceptance
- high rate capability (average interaction rate 20 MHz)
- excellent tracking capabilities, momentum resolution 1%
- Vertex reconstruction for D, K_s , hyperons

- good PID (e, μ , π , K, p) \rightarrow Čerenkov, ToF, dE/dx
- y detection 10 MeV- 15 GeV \rightarrow PWO crystal calorimeter
- no hardware trigger, intelligent online event selection

Challenge for PANDA

Challenge for PANDA

Data-reduction rate by a factor of 1000 is required!

7

Readout Approach for PANDA

The PANDA readout consist of:

 Intelligent self-triggered front-end: autonomous hit detection and data preprocessing (e.g. based on Sampling Analogue to Digital Converter)

100101101

 a very precise time distribution system (Synchronization Of DAq NETwork): single clock-source for PANDA (event correlation)

 time-sorting and processing data in real-time: processing in FPGA (Field-Programmable Gate Array)

SODANET Topology

SODANET link:

- Bidirectional
- Synchronous (only in one direction)
- Transfer:
 - source → DC: synchronization information and FEE configuration
 - <u>DC</u> → <u>source</u>: slow control, used for time calibration

Data link (DC → BBN):

Unidirectional

Link DC ↔ FEE:

- Bidirectional, synchronous
- Protocol up to subsystem

SODANET

SODANET provides:

- Clocking and synchronisation
- Slow control of FEE
- Bunching of collected data

SODANET implemented for FPGA-based electronics interconnected with optical (serial) links:

- Lattice ECP3
- Xilinx Kintex 7
- Xilinx Virtex 6

The SODANET system is stable in long terms with precision ~30 ps

nodes and PC farm, after the event building

The PANDA detector

Readout of the ElectroMagnetic Calorimeter (EMC)

EMC Front-End Electronics

Burst-building network with data pre-processing (FPGA-based processing)

Physics-event reconstruction, filtering

EMC intelligent front-end:

- MWD filtering (programmable)
- Base-line follower
- Pulse detection
- Pile-up detection and recovery
- Precise time
- Precise energy (amplitude, integral)
- Diagnostics: Possibility to readout raw ADC data (access to the noise-level measurement)
- Controlled readout of waveforms
- Self-monitoring for configuration errors, fast recovery procedure

Data Concentrator

• Data concentrator:

- Running on TRB3 and Xilinx Kintex-7 development boards
- Receiving Waveforms and Hit-data over fiber from FEE
- Energy calibration for each ADC channel
- Packet building (per burst)
- Slow Control with SODANET
- Combine hits from two digitizers corresponding to the same crystal
- Additional features: on-line histogram, data monitoring (hits and waveforms), error detection and counting
- Pre-clustering

Data-Concentrator Hardware

Hardware specifications:

- AMC board
- Kintex Ultrascale+ FPGA
- 60 optical links (12 Gbit/s)
- 16 high-speed serial links to backplane

Data-Concentrator Hardware

Same hardware will be used to construct the "burst-building" network

Readout Overview

Final clustering and event selection is performed at the Compute-Node level

FPGA-based Compute Node

EMC clustering:

- Pre-clustering at the level of DC
- Final clustering in CN

Readout Verification (EMC clustering)

Block-diagram of the verification setup

Input generated with the time-based MC simulations ... Output of hardware to be compared with offline processing ...

Readout Verification (EMC clustering)

VHDL implementation of a clustering IP core

Readout Verification (STT tracking)

Typical fit performed by the online algorithm

Readout Verification (STT tracking)

The tracking efficiency and the resolution as a function of the transverse momentum.

Benchmark channels for event selection (low luminosity)

- Proof-of-principle benchmark channels
- Should cover various aspects of day-1 physics
- PhysCom decided on:
 - 1. Small cross section case / charmonium: $\bar{p}p \rightarrow J/\psi(e^+e^-/\mu^+\mu^-) \pi^+\pi^- @ 3.872 \text{ GeV}$
 - 2. Very small cross-section, exclusive / form factor physics: $\bar{p}p \rightarrow e^+e^-$ @ 2.254 GeV $\bar{p}p \rightarrow e^+e^- \pi^0$ @ 2.254 GeV
 - 3. High cross section / hyperon physics: $\bar{p}p \rightarrow \Lambda \bar{\Lambda} @ 2.304 \text{ GeV}$
- Single trigger lines (although should be simultaneous for J/ψ)
- Use mainly simple quantities, probably easy to determine online

Benchmark channels for event selection (low luminosity)

Goal: **f**_{tot} = **1000**

Channel	Signal Efficiency _{Es} [%]			BG suppr. <mark>f [×1000]</mark>		
	OFF	P1	D1	OFF	P1	D1
$\bar{p}p \rightarrow J/\psi(\mu^+\mu^-) \pi^+\pi^-$	56	56	56	38	34	26
$\bar{p}p \rightarrow J/\psi(e^+e^-) \pi^+\pi^-$	32	32	25	167	1000	1000
p̄p → e+e-	54	54	41	100	77	111
$\bar{p}p \rightarrow e^+e^-\pi^0$	36	36	17	3.8	3.7	6.4
$\bar{p}p \rightarrow \Lambda \bar{\Lambda}$	30	30	30	0.13	0.13	0.12

- We are convinced that for the phase-1 (low luminosity) the streaming-readout concept is working.
- For high-luminosity complete time-based simulations have to be used for the readout verification (event selection).

PANDA physics

Collaboration

UniVPM Ancona U Basel **IHEP Beijing U** Bochum U Bonn U Brescia IFIN-HH Bucharest AGH UST Cracow **IEJ PAN Cracow** JU Cracow U Cracow FAIR Darmstadt GSI Darmstadt JINR Dubna U Edinburgh U Erlangen NWU Evanston U & INFN Ferrara

FIAS Frankfurt U Frankfurt LNF-INFN Frascati U & INFN Genova U Gießen U Glasgow BITS Pilani KKBGC, Goa **KVI** Groningen Sadar Patel U, Gujart Gauhati U, Guwahati USTC Hefei **URZ** Heidelberg FH Iserlohn FZ Jülich IMP Lanzhou **INFN** Legnaro U Lund

HI Mainz

U Mainz INP Minsk ITEP Moscow MPEI Moscow BARC Mumbai U Münster Nankai U **BINP Novosibirsk** Novosibirsk State U IPN Orsay U Wisconsin, Oshkosh U & INFN Pavia Charles U, Prague Czech TU, Prague **IHEP Protvino** Irfu Saclay U of Sidney

PNPI St. Petersburg West Bohemian U, Pilzen **KTH Stockholm** U Stockholm SUT, Nakhon Ratchasima SVNIT Surat-Gujarat S Gujarat U, Surat-Gujarat FSU Tallahassee U & INFN Torino Politecnico di Torino U & INFN Trieste U Uppsala U Valencia SMI Vienna U Visva-Bharati SINS Warsaw

more than 460 physicists from from 75 institutions in 19 countries

Thank you for your attention!

Planning

PANDA phases

