Cosmlc Orb|ta| and Suborb|ta| Microwave ObservabonS

) Ground based CMB experlments
4/5 March 2019

Antenna Systems and Characterization through UAV
Oscar Antonio PEVERINI
@I IQTI\ Giuseppe VIRONE

@ I&TI\ 4th ASI/COSMOS Workshop: Ground-based CMB experiments 1




Antenna Systems for Space Applications

1. Telecommunications
. Fixed Satellite Services (FSS)
. Mobile Satellite Services (MSS) (Iridium, Iridium-Next)
. Broadcasting Satellite Services (BSS)
. Internet, multi-media applications, Voice over IP (VoIP), Video conference (KaSAT)
= Military and governmental telecommunication services (Athena-Fidus)

2. Observation of the Earth
. Meteorology (MetOp, MetOp-SG)
= Oceanography
= Environmental disaster monitoring, seismic hazard analysis (COSMO-SkyMed)

3. Navigation and Localization
. GPS
n Galileo

4. Cosmology and Fundamental Phisics
n Astrophysical surveys (Planck, WMAP)

5. Space Exploration
= Planet exploration (ExoMars)
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Antenna Systems for Space Applications

System Requirements
Antenna-feed cluster for SFB

SatCom antennas
* Multi-frequency (SatCom, EO) (Courtesy of Thales Alenia Space)
* On-ground coverage (SatCom, EO) - R

* High capacity (SatCom)

e High resolution (EO, Science)

* High sensitivity (EO, Science)

K/Ka-band
Thand (G
o band ()
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Multi-Beam & Multi-Band Antenna-Feed Systems
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LU Twist Main Issues
H-plane =  Payloads with hundreds of antenna-
Bend .
1111 ¢ feed chains
Magic = High numbers of components
T-junction = Qverall dimensions & mass
I I
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tHcpd 4 RHCP
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Multi-Beam & Multi-Band Antenna-Feed Systems

Tx Rx
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11T 1L
YT Twist Technological Developments
H-plane = RF designs oriented to
TT 1T " manufacturing processes
Magic = Integration of functionalities (RF,
T-junction thermal, mechanical)
I I
Hybrid =  Manufacturing technologies
coupler

hl T
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RF Designs Oriented to EDM Platelet Manufacturing

Circular
Wavegulde

> L S -
oSS
Central
- Waveguide
Paths

wer
W veguide
Paths

=  Multi-layer layout with standard-thickness metal layers
= Manufacturing process parallelization (wire EDM)
=  Symmetric design <~ channel equalization

=  Plumbing to match the correlation unit flange

Rectangular
Waveguides
Sections

Mitered
E-plane
Junctions

Twisted
Waveguide
Sections

Output
Ports

Q-band STRIP-LSPE OMTs

ASI project N. 1/038/09/0 “Sviluppi tecnologici nel millimetrico per missioni di polarizzazione”

ASI project N. 1/038/09/0 “Large Scale Polarization Explorer”
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RF Designs Oriented to EDM Platelet Manufacturing

Q-band STRIP-LSPE OMTs

Measured Performance

39 — 48 (nominal) (21%)
Ele/(Cint2 29 - 50 (enlarged) (53%)

Insertion Ioss(dB) <0.6(<0.3 5|Iver-plated)
sofation ()
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@ lar

Circular
Waveguide
Port

Upper
Bends

Turnstile

and
T Junctions
Lower
Bends
Stepped
Waveguide
Transformers

Rectangular
Waveguide
Ports (WR10)

W-band Platelet Ortho-Mode Transducer

Measured Performance & Envelope

Band (GHz) 81— 109 (30%)

Return loss (dB)
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RF Designs Oriented to 3D Printing

Main Advantages

= Manufacturing of parts with complex geometries =# integration of several RF functionalities in a single
block, minimization of flanges and screws (SFB, MFB)

= Design flexibility =» novel layouts of waveguide components
= Near-net shapes = reduction of mass and waste

= Reduction of lead time and cost =» more efficient component development

Main Issues

= Manufacturing accuracy and repeatability = impact on RF performance @ high frequencies
= Maximum part size =» applicability limits to low frequency applications (C, X bands)

= Surface roughness =» high insertion losses

= Qualification and quality assurance =» standardization of new processes

ESA project AO/1-9376/19/NL/HK “Evaluation and consolidation of Additive Manufacturing processes
and materials for the manufacturing of RF hardware”

ESA project AO/1-8876/17/NL/CRS “3D printing of high-frequency components”
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RF Designs Oriented to 3D Printing: OMTs

Parameter Value

Operative Band 28.5-31.2 GHz (10%)
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RF Designs Oriented to 3D Printing: Smooth-Wall Feed-Horns

Parameter Value

Q1 = [37.5, 40.5] GHz (7.7%)
Operative Band Q2 =[42.5, 43.5] GHz (2.3%)
V =[47.2, .50.2] GHz (5.5%)
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RF Designs Oriented to 3D Printing: Septum Polarizer + Feed Horn

Parameter Value

Operative Band 28.5-31.2 GHz (10%)

lllumination Angle 22 deg

Taper at lllumination Angle [16, 20] dB

Normallzed Radlatlon pattern
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RF Designs Oriented to 3D Printing: H-Plane Bend + Twist + Filter
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RF Designs Oriented to 3D Printing: H-Plane Bend + Twist + Filter
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SKA AAVSO0.5 Array pattern at 350 MHz
Cartesian Raster measurement in FF

Normalized array pattern at 350 MHz
uv plane, 150 m height

UNIVERSITY OF
CAMBRIDGE

24
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Gunn-based Development of Q-band payload for UAV

i Batter ; variable WR-22
RF chain Y regulator oscillator

attenuator(s)

Voltage Gunn Fixed and/or j

Payload mounted on the UAV

Passive components measured at the VNA
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Vibration Problems

UAV not flymg and close to the Rx

WeII deflned spectrum

-50 r ”

Magnitude (dB)
iy
o

90 ] ;
W WMWW . UAV flying at the zenith

41.575 41.58 41.585 41.59 41.595
Frequency (GHz)

Tx frequency hopping
caused by motor vibrations

'VIBRATION
PROBLEMS
g0t (6-7 MHz)

Magnitude (dB)

41575 4158 41585 41.59  41.595

Frequency (GHz)
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Vibration Problems: after damping

UAV flying at 25 m height
and spinning around zenith
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PLL-based Development of Q-band payload for UAV
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Rec Power (dBm)

@ ar

-100

-120

PLL oscillator + multiplier on the UAV, no vibration damping

Time from trigger (ms)
13:35:48
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= One meas
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Generator on the UAV:
vibrations impact on the
spectrum shape

Occupied bandwidth is
increased and side-peaks
overpower the carrier

Epoch #71
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Zero Span Acquisition with 1 MHz RBW
Span zero & 1 MHz RBW

RBW sufficient to account for spectrum distortion (e.g. between 100 kHz and 1 MHz)
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PLL-based Development : power stability issue

Note: also the spectrum analyzer was warming up,

nevertheless the effect of the heatsink is clear

2 measurements, output power
vs. time, without and with

N0 heatsink

. . === Heatsink on both PLL and multiplier
heatsink, in laboratory (room 14 -
temperature ~21°C, no forced air-
flow on the devices) =15
m
. . — 2 -16
The plot highlights a variation of g
the output power due to the ks 4
temperature (cumulative effect of ”r
R Acquisition stopped
PLL and multiplier) (... and 18 U e Gvar eshg o
spectrum analyzer) the multiplier

-19 I L I
00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20

Time (hh:mm)
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Scan strategies and accuracy

Flight strategy example

LSPE pointing angle from zenith: 20°

Raster measurement @ 120 m flying height
above the ground (quasi-far-field)

Size of raster flight: £10 m (¥4 Deg)

It will be covered in multiple flights

Positioning accuracy and related measurement

uncertainty

e RTK GPS accuracy (horizontal): 2 cm

e Resulting angular accuracy @ flying
location: £0.0084°

e RTK GPS accuracy (height): £5 cm

e Resulting angular accuracy @ flying
location: £0.0077°

e Combined worst-case angular accuracy:
+0.0161° (60 arcsec)

e Uncertainty on path loss (spatial

attenuation): <0.01 dB
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Conclusion

Sources

* PLL has better frequency stability

 Gunn has better power stability (not enough)

A power measurement device is needed onboard

Flight Strategy
e Near-field beam verification
 UAV with longer flight duration is valuable

* Coupling with star tracker for enhanced accuracy
(absolute pointing), ref. Michele Maris

@ IQTI\ 4th ASI/COSMOS Workshop: Ground-based CMB experiments

24



