

KIDs for W band in Italy

Alessandro Paiella

4th ASI/COSMOS Workshop: Ground–based CMB experiments

Dipartimento di Fisica – Università degli Studi di Milano $4^{\text{th}}-5^{\text{th}}$ March 2019

Working principle

Kinetic Inductance Detectors

- Kinetic Inductance Detectors (KIDs) are superconductive detectors, where the radiation is detected by sensing changes of the kinetic inductance, L_k .
- A superconductor, cooled below its critical temperature T_c, presents two populations of electrons: quasiparticles and Cooper pairs (binding energy 2Δ).
- Pair-breaking radiation (hν > 2Δ), absorbed in a superconducting film, breaks Cooper pairs, producing a change in the population relative densities, and thus in L_k.
- In the lumped element configuration, a superconducting strip is properly shaped and sized in order to perform like a radiation absorber.
- This structure, which is an inductor as well, is coupled to a capacitor to form a high–Q resonator.

Working principle

Kinetic Inductance Detectors Working principle

- The change in L_k produces a change in the resonant frequency, ν_r , and in the quality factor, Q.
- They can be sensed by measuring the change in the amplitude and phase of the bias signal of the resonator, transmitted past the resonator through a feedline.
- KID design and readout scheme are intrinsically multiplexable for large–format arrays.

Working principle

Kinetic Inductance Detectors Working principle

- The change in L_k produces a change in the resonant frequency, ν_r , and in the quality factor, Q.
- They can be sensed by measuring the change in the amplitude and phase of the bias signal of the resonator, transmitted past the resonator through a feedline.
- KID design and readout scheme are intrinsically multiplexable for large–format arrays.

Astrophysics in the W-Band CMB science targets

Astrophysics in the W–Band

- W-band: [75, 110] GHz.
- This band lies at an interesting transition between frequencies where Galactic emission is dominated by free-free, synchrotron and spinning dust, and frequencies where is dominated by thermal dust.

• In the W-band, the atmosphere is quite transparent, and then we can perform ground-based observations, avoiding the costs, complications and aperture limitations of balloon-borne and space-based missions.

Astrophysics in the W-Band CMB science targets

Ground-based W-band

Science in W-band

- CMB polarisation → STRIP2 see C. Franceschet talk;
- Spectral distortions → COSMO see P. de Bernardis talk;
- Sunyaev–Zel'dovich effect → SRT see A. Navarrini talk.

Sardinia Radio Telescope

- 64 m primary mirror;
- 7.9 m secondary mirror;
- pointing accuracy of 2-5 arcsec.

Search for the superconductive material Properties & Performance Fabrication

Search for the superconductive material (Paiella A. et al. 2016, JLTP)

- W-band: [75, 110] GHz
- $h\nu > 2\Delta = 3.52 \ k_B \ T_c \Rightarrow T_c < 1.02 \ {\rm K}$
- Aluminum

Search for the superconductive material Properties & Performance Fabrication

Search for the superconductive material (Paiella A. et al. 2016, JLTP)

- W-band: [75, 110] GHz
- $h\nu > 2\Delta = 3.52 \ k_B \ T_c \Rightarrow T_c < 1.02 \ {\rm K}$
- Aluminum

Search for the superconductive material Properties & Performance Fabrication

Search for the superconductive material (Paiella A. et al. 2016, JLTP)

- W-band: [75, 110] GHz
- $h\nu > 2\Delta = 3.52 \ k_B \ T_c \Rightarrow T_c < 1.02 \ {\rm K}$
- Titanium-Aluminum bilayer (Catalano A. et al. 2016, A&A)

Search for the superconductive material Properties & Performance Fabrication

Search for the superconductive material (Paiella A. et al. 2016, JLTP)

- W-band: [75, 110] GHz
- $h\nu > 2\Delta = 3.52 \ k_B \ T_c \Rightarrow T_c < 1.02 \ \mathrm{K}$
- Titanium-Aluminum bilayer (Catalano A. et al. 2016, A&A)

5 March 2019

Search for the superconductive material **Properties & Performance** Fabrication

Properties & Performance

- CPW feedline;
- back illumination;
- no radiation coupler;
- no λ/4 backshort;
- basic optimisation.

t	T_c	$\Delta(0)$	R_{\Box}	L_{\Box}
[nm]	[mK]	[meV]	$[\Omega/\Box]$	$[pH/\Box]$
10 + 25	812	0.124	0.952	1.62
10 + 30	914	0.138	0.635	0.962

Material Properties

Electrical Performance $@150\,\mathrm{mK}$

t [nm]	Q_i	Q_c	Q
10 + 25	3.0×10^4	2.2×10^4	1.3×10^{4}
10 + 30	3.2×10^4	2.5×10^4	1.4×10^4

Optical Performance $@150\,\mathrm{mK}$

t [nm]	$ u_{co} $ [GHz]	$\frac{\text{NEP}}{\left[\text{fW}/\sqrt{\text{Hz}}\right]}$	$\begin{bmatrix} NET_{RJ} \\ mK\sqrt{s} \end{bmatrix}$
10 + 25	64	3.9	2.8
10 + 30	74	5.8	4.2

イロト イヨト イヨト イヨト

Search for the superconductive material Properties & Performance Fabrication

Fabrication

- $\bullet\,$ The detector arrays are fabricated in the ISO5/ISO6 clean room of IFN–CNR in Rome.
- Substate: high–quality (FZ method) intrinsic Si(100) wafers, with high resistivity ($\rho > 10 \,\mathrm{k\Omega \, cm}$), double side polished (diameter 2, 3, and 4").
- Fabrication process (Colantoni I. et al 2016, JLTP):

Optical simulations Optical simulation results Optical simulation reliability Maximise the responsivity

KID design & simulations Optical simulations

What do they constrain?

- material and thickness of superconducting film $(\Rightarrow L_k)$ and dielectric substrate;
- geometry and size of absorber (⇒ L_g) and radiation couplers, number of detectors;
- illumination configuration.

5 March 2019

Alessandro Paiella

front, back

 d_b

Substrate (Si) Illumination KID design & simulations

KID design & simulations

Optical simulation results

HFSS

Design: radiation coupler + absorber +substrate + backshort

Optical simulation results

Hilbert	Radiation Coupler	Absor.	Losses
	waveguide	81%	< 2%
III	flared waveguide	81% 83%	< 2%
	waveguide	90%	< 1%
IV	flared waveguide	91%	< 1%
	choked waveguide	91%	< 0.5%

Optical simulations Optical simulation results Optical simulation reliabilit Maximise the responsivity

KID design & simulations

Optical simulation results

HFSS

Excitation: two modes, mimicking both polarisations of the incident radiation

Hilbert	Radiation Coupler	Absor.	Losses
	waveguide	81%	< 2%
III	flared waveguide	81%	< 2%
	choked waveguide	83%	< 1.5%
	waveguide	90%	< 1%
IV	flared waveguide	91%	< 1%
	choked waveguide	91%	< 0.5%

Optical simulations **Optical simulation results** Optical simulation reliability Maximise the responsivity

KID design & simulations

Optical simulation results

HFSS

Boundary: impedance of free-space

Hilbert	Radiation Coupler	Absor.	Losses
	waveguide	81%	< 2%
III	flared waveguide	81%	< 2%
	choked waveguide	83%	< 1.5%
	waveguide	90%	< 1%
IV	flared waveguide	91%	< 1%
	choked waveguide	91%	< 0.5%

Optical simulations **Optical simulation results** Optical simulation reliability Maximise the responsivity

KID design & simulations

Optical simulation results

HFSS

Boundary: impedance of the substrate

Hilbert	Radiation Coupler	Absor.	Losses
	waveguide	81%	< 2%
III	flared waveguide	81%	< 2%
	choked waveguide	83%	< 1.5%
	waveguide	90%	< 1%
IV	flared waveguide	91%	< 1%
	choked waveguide	91%	< 0.5%

KID design & simulations

Optical simulation results

HFSS

Boundary: sheet resistance of the Ti–Al bilayer $10{+}25\,\mathrm{nm}$ thick

Optical	simulatio	on results

Results Hilbert Radiation Coupler Absor. Losses 81% < 2%waveguide III flared waveguide 81% < 2%choked waveguide 83% < 1.5%90% < 1%waveguide IV flared waveguide 91% < 1%< 0.5%choked waveguide 91%

Optical simulations Optical simulation results **Optical simulation reliability** Maximise the responsivity

Optical simulation reliability The OLIMPO case (Paiella A. et al. 2019, JCAP)

- For the OLIMPO KIDs, the same optimisation procedure has been used, as an example:
 - 150 GHz receiver: front illuminated IV order Hilbert absorber coupled to the radiation via single–mode waveguide;
 - 350 GHz receiver: front illuminated IV order Hilbert absorber coupled to the radiation via single–mode flared waveguide.

$150\,\mathrm{GHz}$ receiver

350 GHz receiver

Optical simulations Optical simulation results Optical simulation reliability **Maximise the responsivity**

Maximise the responsivity

Responsivity: III vs. IV Hilbert order

$$\begin{split} \mathcal{R}_{opt} &= \eta_{opt} \mathcal{R}_{elec} = -\eta_{opt} \frac{\eta_{pb} \tau_{qp}}{\Delta} 4Q \frac{\delta x}{\delta N_{qp}} \\ &\propto \eta_{opt} \frac{QL_k}{VL} \\ \mathcal{R}_{opt}^{max} &\propto \eta_{opt} \frac{Q_i L_k}{VL} \propto \frac{L_{\Box}}{\rho} \frac{\eta_{opt}}{\ell_{abs}^{tot} w_h} \frac{1}{\sqrt{LC}} \\ \frac{\mathcal{R}_{opt}^{III}}{\mathcal{R}_{opt}^{IV}} &= \frac{\eta_{opt}^{III}}{\eta_{opt}^{IV}} \frac{\ell_{abs}^{tot,IV}}{\ell_{abs}^{tot,III}} \underbrace{\sqrt{\frac{L^{IV}C^{IV}}{L^{III}C^{III}}}}_{\text{lumped}} \\ &\propto \frac{\eta_{opt}^{III}}{\eta_{opt}^{IV}} \left(\frac{\ell_{abs}^{tot,IV}}{\ell_{abs}^{tot,III}} \right)^2 \sim 5.5 \Rightarrow (III) \\ \hline \frac{\text{Hilbert} \ s_h \ [\mum] \ w_h \ [\mum] \ \ell_{abs}^{tot} \ [\mum]}}{111} \\ \hline \frac{450}{2} \ 28413} \\ \hline \end{split}$$

Lumped Element Condition

- How: $\ell_{abs}^{tot} \ll \lambda_r$.
- Why: voltage and current do not vary over the physical dimension of the elements ⇒ uniform radiation absorption in the inductor.
- Operatively: current distribution null in the capacitor and uniform in the inductor.

Completing the KID design via electrical simulations Working Temperature Possible Integration in a mm-wave ground-based telescope

On–going activity

Completing the KID design via electrical simulations

What do they constrain?

- geometry and size of feedline and capacitors;
- coupling between resonators and feedline.

Parameters					
Geometrical Electrical					
Feedline	w_{fl}	Z_{fl}			
Capacitor	ℓ_c,w_c,s_c	C			
Coupling Capacitor	ℓ_{cc},w_{cc},s_{cc}	C_c	$\Leftarrow Q_c$		

$$\begin{split} \nu_r &= \frac{1}{2\pi\sqrt{LC}} \sim 350 \, \mathrm{MHz} \ \text{by LE condition} \\ Q_i &= \frac{1}{R_s} \sqrt{\frac{L}{C}} \sim 10^4 - 10^5 \\ Q_c &= \frac{8C}{2\pi\nu_r C_c^2 Z_{fl}} \sim Q_i \end{split} \right\} \Rightarrow Q, \mathcal{R} \ \text{maximised} \end{split}$$

$$L = L_k + L_g$$
 by optical simulations

- feedline impedance (Z_{fl}) ;
- scattering parameters (S);
- current distribution.

Completing the KID design via electrical simulations Working Temperature Possible Integration in a mm-wave ground-based telescope

On-going activity Working Temperature

NET
$$(P_{\text{bkg}}, T) = \sqrt{\left[\text{NET}_{\text{phot}}(P_{\text{bkg}})\right]^2 + \left[\text{NET}_{\text{gr}}(P_{\text{bkg}}, T)\right]^2}$$

Ingredients

- $T_c = 812 \text{ mK}$ measured for 10+25 Ti-Al;
- $\ell_{tot}^{abs} = 28\,413\,\mu\text{m}, w_h = 2\,\mu\text{m};$
- $\eta_{opt}(\nu)$ simulated.

Completing the KID design via electrical simulations Working Temperature Possible Integration in a mm-wave ground-based telescope

On-going activity Working Temperature

NET
$$(P_{\text{bkg}}, T) = \sqrt{[\text{NET}_{\text{phot}} (P_{\text{bkg}})]^2 + [\text{NET}_{\text{gr}} (P_{\text{bkg}}, T)]^2}$$

Ingredients

- $T_c = 812 \text{ mK}$ measured for 10+25 Ti-Al;
- $\ell_{tot}^{abs} = 28\,413\,\mu\text{m}, w_h = 2\,\mu\text{m};$
- $\eta_{opt}(\nu)$ simulated.

Completing the KID design via electrical simulations Working Temperature **Possible Integration in a mm-wave ground-based telescope**

On-going activity Possible Integration in a mm-wave ground-based telescope

Advantages of this optical system and detectors

- Cope with large radiative loading with efficient filters stack;
- control straylight with internal reimaging optics;
- edge-taper controlled via feedhorns and cold stop;
- wide correct focal plane;
- mechanical cooler for continuous operation;
- sub-K cooler can be 0.25 K (NET calculations seen above).

