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Kinetic Inductance Detectors

Working principle

Kinetic Inductance Detectors

o Kinetic Inductance Detectors (KIDs)
are superconductive detectors, where
the radiation is detected by sensing
changes of the kinetic inductance, L.

@ A superconductor, cooled below its
critical temperature T., presents two
populations of electrons: quasiparticles
and Cooper pairs (binding energy 2A).

o Pair-breaking radiation (hv > 2A),
absorbed in a superconducting film,
breaks Cooper pairs, producing a
change in the population relative
densities, and thus in Ly.

@ In the lumped element configuration, a
superconducting strip is properly
shaped and sized in order to perform
like a radiation absorber.

@ This structure, which is an inductor as
well, is coupled to a capacitor to form a
high—Q resonator.
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Kinetic Inductance Detectors

Working principle

Kinetic Inductance Detectors

‘Working principle

@ The change in Lj produces a change in the resonant frequency, v, and in the quality
factor, Q.

@ They can be sensed by measuring the change in the amplitude and phase of the bias
signal of the resonator, transmitted past the resonator through a feedline.

@ KID design and readout scheme are intrinsically multiplexable for large—format

arrays.
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Kinetic Inductance Detectors

Working principle

Kinetic Inductance Detectors

‘Working principle

@ The change in Lj produces a change in the resonant frequency, v, and in the quality
factor, Q.

@ They can be sensed by measuring the change in the amplitude and phase of the bias
signal of the resonator, transmitted past the resonator through a feedline.

@ KID design and readout scheme are intrinsically multiplexable for large—format
arrays.
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Science C : W—band

Astrophysics in the W—Band

o W-band: [75, 110] GHz.

@ This band lies at an interesting
transition between frequencies where
Galactic emission is dominated by
free—free, synchrotron and spinning
dust, and frequencies where is
dominated by thermal dust.
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@ In the W—band, the atmosphere is quite
transparent, and then we can perform
ground—based observations, avoiding the
costs, complications and aperture
limitations of balloon—borne and
space—based missions.
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Science C : W—band

Astrophysic . W-Band

10

o CMB polarisation — STRIP2
see C. Franceschet talk;

@ Spectral distortions — COSMO
see P. de Bernardis talk;

@ Sunyaev—Zel’dovich effect — SRT
see A. Navarrini talk.
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Sc'nch for the superconductive material

Preliminary measurements erformance

Search for the superconductive material (Paiella A. et al. 2016, .

@ W-band: [75, 110] GHz
0 hv >2A =352kp T, = T. < 1.02K

@ Aluminum
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ch for the superconductive material
Preliminary measurements operties & Performance
Fabrication

Search for the superconductive material (Paiella A. et al.

@ W-band: [75, 110] GHz
0 hv >2A =352kp T, = Tc < 1.02K

@ Aluminum

40 nm thick 80 nm thick
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Sc'nch for the superconductive material

Preliminary measurements erformance

Search for the superconductive material (Paiella A. et al. 2016, JLTP)
@ W-band: [75, 110] GHz
® hv>2A =352k Te = Te < 1.02K

o Titanium—Aluminum bilayer (Catalano A. et al. 2016, AEA)
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Search for the superconductive material
& Performance

Preliminary measurements Propertie

Fabrication

Search for the superconductive material (Paiella A. et al. 2016, JLTP)

@ W-band: [75, 110] GHz
o hv>2A=352kp T, = T. < 1.02K
o Titanium—Aluminum bilayer (Catalano A. et al. 2016, AEA)

10 + 25 nm thick 10 + 30 nm thick
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Properties & Performance

@ CPW feedline;
@ back illumination; " [fW/\/E] [mK\/é]
@ no radiation coupler;
@ no \/4 backshort;
@ basic optimisation.




< ch for the superconductive material
Preliminary measurements >roperties & Performance

Fabrication

o The detector arrays are fabricated in the ISO5/ISO6 clean room of IFN-CNR in
Rome.

@ Substate: high—quality (FZ method) intrinsic Si(100) wafers, with high resistivity
(p > 10kQ cm), double side polished (diameter 2, 3, and 4").

o Fabrication process (Colantoni I. et al 2016, JLTP):

Not in scale!

Uniform Electron-Beam Development in Electron-gun Lift-off
deposition of Litography a solution (1:1) evaporation
PMMA on of MIBK and
Si substrate IPA r

@CNRIFN r

Istituto di Fotonica e Nanotecnologie




Optical simulations

@ material and thickness of superconducting
film (= Lj) and dielectric substrate;
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KID de & simulations

KID design & simulations

Optical simulation results

Design: radiation coupler + absorber + Hilbert[ Radiation Coupler [ Absor. [ Losses
substrate + backshort
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mulations

simulation r
> the responsivity

KID de & simulations

KID design & simulation

Optical simulation results

EXClt.atI().n: two mOd,es’, mlmlelpg'bOth Hilbert‘ Radiation Coupler ‘ Absor. ‘ Losses
polarisations of the incident radiation
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mulations

simulation r.
> the responsivity

KID de & simulations

KID design & simulation

Optical simulation results

Boundary: impedance of free-space Hilbert [ Radiation Coupler [ Absor. [ Losses
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KID design & simulation

Optical simulation results

ations

ation r
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Boundary: lmPEdance of the substrate Hilbert[ Radiation Coupler [ Absor. [ Losses
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KID de & simulations

KID design & simulations

Optical simulation results

B,Oundary: sheet reSI,Stance of the Ti~Al Hilbert[ Radiation Coupler [ Absor. [ Losses
bilayer 10425 nm thick
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mulation
mul on rel

& simulations
the respor

Optical simulation reliabilit
The OLIMPO case (Paiella A. et al. 2019, JCAP)

o For the OLIMPO KIDs, the same optimisation procedure has been used, as an example:

e 150 GHz receiver: front illuminated IV order Hilbert absorber coupled to the radiation via
single-mode waveguide;

@ 350 GHz receiver: front illuminated IV order Hilbert absorber coupled to the radiation via
single-mode flared waveguide.

150 GHz receiver 350 GHz receiver
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n qup ox
Ropt = Nopt Relec = 7770ptp74Q

- QL
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QiLy Lo mopt 1
’g;;%it X Topt ‘;L s 74150?0 /
p abswh LC
Ropt  Mopt ézobts’lv LV v

v IV jtot,II1 IIT 11T
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nIII ptot. IV 2
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X 5 Jtot. T ~ 5.5 = @
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abs
Hilbert[ sp [pm] [ wp, [pm] [ 291 [um]
IIT 450 2 28413
v 270 2 69105

Lumped EI Condition

@ How: fflobts <L A

A SNgp @ Why: voltage and current do not vary

over the physical dimension of the
elements = uniform radiation absorption
in the inductor.

@ Operatively: current distribution null in
the capacitor and uniform in the inductor.
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Cornplet]rng the KID design via electrical simulations

ground-based telescope

On-going activity

Completing the KID design via electrical simulations

@ geometry and size of feedline and capacitors;

@ coupling between resonators and feedline.

Param
[ Geometrical [ Electrical
Feedline Wy Zg £, C
. <= v,
Capacitor Loy, We, Se (o} = Z)Z
Coupling
Chmiion Lec, Wees Sce C. < Qe
! 350 MHz by LE diti
Vp = ———— ~ z by condition
sy v . X
SONNET simulations
Qi = 7\/ ~ 10* @ Input: resonator & feedline design;
= @, R maximised
@ Output:

o feedline impedance (Zy;);
o scattering parameters (S);
e current distribution.

QC 27I'V7<C§Zfl ~ Ql

L =Ly + Ly by optical simulations
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Completing the KID design via electrical simulations
Working Temperature

Possible Integration in a mm-wave ground d telescope

On-going activity

‘Working Temperature

o T, =812mK
NET (Poig, T) = \/[NETphot (Pokg)]? + [NETg, (Pokg, T)]? measured for 10425 Ti—Al;

° Z%’ts = 28413 pm, wy = 2 pm;

@ 7Nopt (V) simulated.

NET vs. Ppke, T
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Completing the KID design via electrical simulations
Working Temperature

Possible Integration in a mm-wave ground d telescope

On-going activity
‘Working Temperature

Ingredients

o T, =812mK

NET (Pokg, T) = \/[NETphot (Pokg)]? + [NETgr (Pokg, T)]? measured for 10+25 Ti—Al;
° Z%’ts = 28413 pm, wy = 2 pm;

@ 7Nopt (V) simulated.

NET vs. Ppke, T
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KID design via electrical simulations

ctivity

und—b
300K PP window w fast beams from
the tel
300K vacuum shell \ e telescope
of this optical 40K filters stack B
system and detectors 40K shield > L7
. . fedtens —— | |- :
° Copg w1th large r.adlatlve P, 1 .
loading with efficient filters 4K shield ‘\ \
stack; 4K cold stop y_\
@ control straylight with pupillenses —— | | |

internal reimaging optics;

Reimaging optics

@ edge-taper controlled via 4K mechanical

similar to EBEX :
feedhorns and cold stop; ( ) refrigerator
@ wide correct focal plane; camera lens
. (telecentric) —mH~ 0 |
@ mechanical cooler for
continuous operation; 03K filter
0.3K by
@ sub—K cooler can be 0.25 K ]
A homn array
(NET calculations seen detector wafer —— |
above).
) 0.25K refrigerator — |

KIDs for W band in It



