European Low-Frequency Survey (ELFS)

Mike Jones

Angela Taylor

Jaz Hill-Valler, Luke Jew, Alex Pollak

University of Oxford

Marco Bersanelli

University of Milan

Carlo Baccigalupi

SISSA, Trieste

Jose Alberto Rubino-Martin

IAC, Tenerife

Polarized synchrotron is everywhere!

Why do we need low frequency?

The Low-Frequency Manifesto

- We will not get to $r < 10^{-3}$ just by observing at >40 GHz low freq foregrounds are too complicated.
- The CMB community needs a 10 − 40 GHz (plus ~100 GHz) dedicated observatory
- This needs full sky coverage (to complement satellite missions) and wide *l* range, so
- Two sites (north and south) and low-*l* and high-*l* components
- The European community is uniquely well-placed to do this

Specifications for ELFS

- Frequency: synchrotron-dominated range (from ground)
 - 10-40 (radiometer) essential complement to CMB-S4, satellites.
 - 90-120 GHz (KIDS) no other high-freq, high-res in north
- All-sky so two sites
- Sensitivity: 0.5-1µK-arcmin scaled to 100 GHz
 - Few elements at 5-20 GHz
 - > 100 elements at 20-40 GHz
 - > 1000 elements at 100 GHz
- Resolution: *l*>1000 at lowest frequency
 - $-\sim$ 6-m class telescope for low *l*
 - Interferometer array for higher *l*?

ELFS Proposal

- Two 6-m telescopes, shielded crossed Dragone
 - CCAT-p/SO LAT-like, but relaxed surface/pointing specs
- Two interferometer arrays, \sim 20 x 4-m, for high *l*?
- Sites in northern and southern hemispheres
 - Tenerife, Atacama? (or La Silla? Or Argentina? Or...?)
- 10-40 GHz HEMT radiometer array with $O\sim100$ elements
 - Two scaled octave-band corrugated feeds, 10 20 GHz (a few) and 20 40 GHz (most).
- Digital polarimeter
 - Continuous frequency coverage with high freq resolution (for RFI and science)
 - Simultaneous I, Q, U from every pixel
- KIDS array for 90 120 GHz
 - Sequential operation on each telescope

How much sensitivity?

Sensitivity – 1/100 element array with realistic T_{sys}

	beam sens	uK arcmin		uK arcmin	
frequency	(uK)	array	synch factor	scaled	multipole
7.1	35.6	850	4786	0.18	904
7.9	39.8	847	3311	0.26	1015
8.9	44.1	837	2291	0.37	1138
10.0	49.5	837	1585	0.53	1277
11.2	55.3	833	1096	0.76	1433
12.6	62.4	838	759	1.10	1608
14.1	71.1	851	525	1.62	1804
15.8	8.0	87	363	0.24	1991
17.8	9.3	90	251	0.36	2234
20.0	11.9	103	174	0.59	2507
22.4	19.9	153	120	1.27	2813
25.1	15.7	107	83	1.29	3156
28.2	16.6	101	58	1.76	3541
31.6	20.1	110	40	2.75	3973
35.5	23.7	115	28	4.17	4458
39.8	27.8	120	19	6.30	5002

Haslam WMAP Planck

Highforegrounds pixel (1-deg)

Haslam WMAP Planck + CBASS

Highforegrounds pixel (1-deg)

Haslam WMAP Planck

- + CBASS
- + ELFS

Highforegrounds pixel (1-deg)

Planck 'LiteBIRD'

Lowforegrounds Pixel (3-deg)

r = 0

Planck 'LiteBIRD' +CBASS

Lowforegrounds Pixel (3-deg)

r = 0

Planck 'LiteBIRD'

+CBASS

+ELFS

Lowforegrounds Pixel (3-deg)

r = 0

More complicated models?

- Synchrotron is not a single power law
 - Curvature/breaks due to volume averaging and intrinsic energy spectrum
 - Simplest next model is a curvature term C
- AME may not be unpolarized
 - Until you prove it isn't, need to include in models
- More parameters will need more measurements/sensitivity
 - Model with PICO freqs/sensitivity
 - − 21 bands, 21 − 800 GHz, plus C-BASS, plus ELFS

Curved synchrotron model

(c) PLANCK+LiteBIRD+C-BASS+X-BASS

(b) PLANCK+LiteBIRD+C-BASS

(d) PLANCK+LiteBIRD+C-BASS+NextBASS

Curved synchrotron model

Technology status

- Telescope: CCAT-p/SO-LAT underway.
 - Investigate lower spec/cost reduced version.
 - 'Clover' ~2-m telescopes available now (STRIP, QUIJOTE, NextBASS)
- Receiver array: Feeds/OMTs designed. LNAs available
 - LNF LNAs with 0.25 K/GHz commercially available
- Polarimeter backend: FPGA/digitizers developed for SKA (incl firmware, software, commercially available hardware).
- Experience in systems, testing, integration, operations etc in Europe (UK, Italy, Spain...)
- KIDS array: recently flown on OLIMPO / KISS /NIKA

Development of Kinetic Inductance Detectors for the W-band

- Sapienza + IFN-CNR (Rome, Italy)
- Initially developed for a FTS spectraimager for the 64m Sardinia Radio Telescope.
- Now considered for ground-based Bmodes polarimetry
- Bi-layer LEKIDs: 25 nm Al + 10 nm Ti
- Good performance for f > 65 GHz

Paiella A., et al., Journal of Low Temperature Physics, **184**, 97-102,

Slide from S. Masi

Telescope – Gregorian vs CD

Telescope

- Gregorian is not good enough (size of focal plane)
- Shielding 'antenna in a box' eg CCAT-p (but over-spec for max frequency 40/120 GHz)
- Matched optics and interfaces with SO and CMB-S4?

Ground pickup...

Biggest
systematic for C BASS despite
very good far-out
sidelobes: ~10
mK in raw data

Baffling...

Feeds/OMTs/LNAs/Filters...

7 to 15 GHz Bandpass Filter

Rev: Jan 2018

Product features

- RF bandwidth: 23-42 GHz
- Noise Temperature: 7.9 K typical
- Noise Figure: 0.12 dB typical
- Gain: 28 dB
- DC-power: V_d=1.00 V, I_d= 9 mA
- · One gate and one drain supply only
- RF connectors: WR28, UG-599/U
- DC-connector: 9-pin female Nano-D

Absolute maximum ratings

Parameter	Min	Max
V_{ds}	-0.5 V	2 V
l _{ds}		100 mA
V _{gs}	-20 V	+20 V
RF Input drive level		-10 dBm

Typical RF Characteristics

Parameter	Test Condition	Value	Unit
Gain	23-42GHz	28	dB
Noise	23-41GHz	7.9	K
IRL	23-42GHz	13	dB
ORL	23-42GHz	17	dB
P _{1dB}	23-42GHz	-10	dBm
OIP3	23-42GHz	0	dBm

Digital radiometer/polarimeter

- Downconvert and sample IF signals
- 4 GS/s-12b ADC integrated with FPGA now off-the-shelf: 8GHz dual-pol pixel per board
- Channelize essential for RFI (much finer than for science)
- *Q/U* from x-correlation of *R/L* (no polarization modulators needed)
- *I* from autocorrelation of *R*,*L*, stabilized with calibration signal
- On-board DAC for generation of coherent calibration signals

- Firmware/software control being done now for SKA/other projects
- Cost ~€8k per board.

Interferometer array for higher l

freq GHz		•	Projected uKarcmin	lmin	lmax
10.0	0.43	162	0.13	837	4,186
11.2	0.38	129	0.15	939	4,697
12.6	0.34	102	0.17	1,054	5,270
14.1	0.30	81	0.19	1,183	5,913
15.8	0.27	64	0.21	1,327	6,635
17.8	0.24	51	0.24	1,489	7,444
20.0	0.22	41	0.27	1,671	8,353
22.4	0.19	32	0.31	1,874	9,372
25.1	0.17	26	0.35	2,103	10,515
28.2	0.15	20	0.40	2,360	11,798
31.6	0.14	16	0.46	2,648	13,238

- Example for 10 x 4m antenna, 20m max baseline
- Same sampler/FPGA boards provide correlator

Technology Summary

ELFS is doable now, except...

- 6-m shielded telescope ©
- Large cryostat with ~50-100 cm window \equiv
- Octave-band feeds and OMTs \(\text{\text{\text{\certif{\text{\text{\text{\text{\text{\text{e}}}}}}}\)
- Very low noise LNAs 😜
- Digital polarimeters capable of many 10s of GHz \equiv
- Correlator technology with many 10s of GHz \equiv
- Money

ELFS Proposal - costs

Very approximate at present!

- Two telescopes: 2 x €5M = €10M
- Site infrastructure: $2 \times 1M = 2M$
- Operations: $2 \times (\in 0.5 \text{M/yr}) = \in 5 \text{M}$
- Interferometer array x2 = €10M
- Polarimeter array: €5M
- Polarimeter backend: €5M
- KIDS array receiver: €10M
- Staff for construction, operations, analysis: €10M
- Computing: €3M
- Total: \in 60M (times π)

Steps on the way

- X-BASS (STFC grant application, 2018 😔)
 - Single 7-15 GHz pixel on C-BASS South
 - S4 equivalent sensitivity (if thermal noise limited)
- STRIP
 - 40/90 GHz, Tenerife
- QUIJOTE South
 - 10-20 GHz (South Africa/Chile?)
- NEXTBASS (ERC grant application, 2018 😌)
 - 31-element 15-30 GHz array on ex-Clover 2-m telescope
 - C-BASS South site
 - S3+ equivalent sensitivity
 - Proves all technology
- ELFS-p (ERC Synergy application 2019?)
 - 6-m telescope, Tenerife
 - ~100-element array 10 40 GHz

Summary

- Low-frequency full-sky coverage is essential to complement CMB-S4 and satellites.
- Two 6-m telescopes, north and south
- Additional small interferometer array for high *l*?
- Radiometer arrays 10 40 GHz with ~ 100 elements plus KIDS arrays at 90 120 GHz.
- Europe has lead in these areas
- A European Low-Frequency Survey should be a key part of the European CMB strategy.
- Discuss!

