COSMO: spectral measurements from Dome C

Paolo de Bernardis, for the COSMO collaboration

Dipartimento di Fisica, Sapienza, Roma

"4th ASI/COSMOS Workshop: Ground-based CMB experiments" - Milano, March 2, 2019

Spectral Distortions of the CMB

- In the primeval fireball, CMB photons are frequently scattered by free electrons, and efficiently thermalized, thus acquiring their blackbody spectrum.
- After recombination, CMB photons do not interact with matter anymore, and the blackbody spectrum is maintained, with its temperature scaling as the inverse of the scale factor.
- The dependences of the number density and the wavelength on the scale factor conspire to maintain a Planck spectrum for CMB photons.
- All this is *very delicate*: if there is any deviation from any of the hypothesis above, the result will be a *spectral distortion*, a deviation from a pure Planck spectrum.

Spectral Distortions of the CMB

- There is a long list of possible physical phenomena disturbing the equilibrium scenario above, leading to small spectral distortions:
 - In the primeval fireball any *energy release/injection* ruins the thermal equilibrium between photons and matter. Possible processes: dissipation of adiabatic modes, primordial black-holes, mater/antimatter annihilation, particles/relics decay, recombination radiation, ...
 - If the energy injection is at $z_{inj} > 2x10^6$, thermalization is still efficient, and the result is a shift of the BB temperature without distortions
 - For $5x10^4 < z_{inj} < 2x10^6$, Compton scattering is still efficient, and a μ -type distortion is generated
 - $10^4 < z_{inj} < 5x10^4$ is an intermediate regime with residual y/µ distortions (r-type distortions)
 - For 1100 < z_{inj} < 10⁴ Compton scattering is inefficient, and a y-type distortion is created

Spectral Distortions of the CMB

- There is a long list of possible physical phenomena disturbing the equilibirium scenario above, leading to small spectral distortions:
 - In the primeval fireball any *energy release/injection* ruins the thermal equilibrium between photons and matter. Possible processes: dissipation of adiabatic modes, primordial black-holes, mater/antimatter annihilation, particles/relics decay, recombination radiation, ...
 - If the energy injection is at z_{inj} > 2x10⁶, thermalization is still efficient, and the result is a shift of the BB temperature without distortions
 - For $5x10^4 < z_{inj} < 2x10^6$, Compton scattering is still efficient, and a μ -type distortion is generated
 - $10^4 < z_{inj} < 5x10^4$ is an intermediate regime with residual y/µ distortions (r-type distortions)
 - For 1100 < z_{inj} < 10⁴ Compton scattering is inefficient, and a y-type distortion is created
 - During recombination, *photon injection* happens due to recombination radiation, producing very low level features-rich spectral distortions
 - After recombination, *thermal Sunyaev Zeldovich effect* in clusters of galaxies and at reionization produce y-type distortions (the largest ones)
 - Interaction with hydrogen atoms (21 cm line) also can produce spectral distortions at low frequency
 - Very rich literature

Depending on the physical process, the expected spectral distortions have a different shape (ε , μ , γ) See e.g.: **The evolution of CMB spectral distortions in the early Universe** J. Chluba, R. A. Sunyaev MNRAS (2012) **419** 1294

No distortions have been observed to-date (may be not ? See Bowman et al. Nature 2018).

Current upper limits are at a level of 0.01% of the peak brightness of the CMB (COBE – FIRAS), Mather et al. (1990) Ap.J.L. **354** 37, Fixsen et al. (1996) Ap.J. **473** 576

The observable is small, compared to ... everything.

- Great scientific importance of measuring spectral distortions in the CMB – Cosmology and Fundamental Physics.
- Distortion signals are guaranteed to exist, but are very small compared to
 - detector noise,
 - instrument emission,
 - atmospheric emission and fluctuations,
 - foregrounds,
 - the CMB itself.
- Intelligent measurement methods required. Experimentalists way behind theorists. Final measurement certainly to be carried out from space.
- Here focus on a pathfinder experiment, ground-based, which does not target at the smallest distortions, but tries to exploit at best existing, relatively cheap opportunities.

Absolute measurement approach

- The Martin-Pupplett Fourier Transform Spectrometer used un FIRAS and PIXIE has two input ports.
- The instrument is intrinsically differential, measuring the spectrum of the difference in brightness at the two input ports. Normally one port looks at the sly, the other one at an internal reference blackbody

Primordial Inflation Explorer (PIXIE)

Concordia base DOME-C, Antarctica

Satellite measurements can sample the CMB spectrum over the entire range 0-600 GHz. PIXIE !!! (https://asd.gsfc.nasa.gov/pixie/).

Ground based measurements are surely limited to frequencies in the atmospheric transmission windows.

If a ground-based measurement can be attempted from the ground, the site should be the high Antarctic Plateau (e.g. Dome-C or Soith Pole).

COSMO (COSmological Monopole Observer) targets this observable from Dome-C

Why Dome-C : optical depth of the atmosphere (credits : AM code)

Why Dome-C : optical depth of the atmosphere (credits : AM code)

Consider the 2 mm and 1 mm atmospheric windows, which are very transparent (low emission) and where Aluminum KIDs work efficiently. Simulate measurements, mask lines, and attempt spectral template fitting for y, since it has a characteristic shape:

meas = atmo + CMB + ISD + distor(y=10⁻⁶) - B_{ref} (300K, ε =0.02) + noise (BLIP)

a NAIVE SIMULATION of the measurement performance is encouraging :

meas(v) = atmo(v) + CMB(v) + ISD(v) + distor(y=10⁻⁶,v) - B_{ref} (300K, v, ε =0.02) + noise (BLIP) meas(v) = atmo(v) + CMB(v) + ISD(v) + distor(y=10⁻⁶,v) - B_{ref} (1.65K,v) + noise (BLIP) Spectral template fitting procedure to detect spectral distortion:

 $fit(v) = A^*atmo(v) + B^*CMB(v) + C^*B_{ref}(1.65K,v) + D^*ISD(v) + E^*distor(y=10^{-6},v)$

HP: No 1/f (fast scan, see below)

Perfect knowledge of the spectral shape of atmospheric brightness (atmo(v)) y parameter = 1.00e-06 NEP = 1.50e-16 W/sqrt(Hz) integration time for each spectrum = 3600 s photon noise per resolution bin (1 spectrum) = 1.52e-17 W/cm2/sr/cm-1 number of spectra simulated = 10001 corresponding to 416 days of observation fractional atmospheric fluctuations = 1.00e-04 rms, correlated among spectral bins (e.g. PWV fluctuation, see below) # of used spectral bins 40

A= atmos/model =	1.0000007 +/- 1.0019570e-006			
B= cmb/model =	1.0000023 +/- 1.1284262e-006			
C= refe/model =	-0.99999581 +/- 2.1003349e-006			
D= dust/model =	1.0000142 +/- 8.5398778e-006			
E= DSZ/model =	1.21 +/- 0.11			
offset = -2.8e-017 +/- 1.4e-017				

The amplitude of the y distortion is retreived to 10% accuracy. However:

- 1. Assumed fractional fluctuations correlated, and very small. Is this reasonable ?
- 2. Perfect knowledge of the spectrum of the atmosphere is impossible. Any deviation from reality in the model will be interpreted as a spectral distortion. Can we find a way to actually *measure* the atmospheric contribution ?

COSMO : coping with the atmosphere

- We have to measure and subtract atmospheric emission, and we have to do it very quick.
- Recipe to mitigate the problem:
- 1. Work from a high altitude, cold and dry site (Dome-C, Antarctica) to minimize the problem
- 2. Measure the specific spectral brightness of atmospheric emission while measuring the brightness of the sky, modulating the optical depth
- 3. Use fast, sensitive detectors, and fast modulators.

COSMO sky/atmosphere scan strategy

Oversized (1.6m diameter), spinning flat mirror, 10° wedge (red/blue) To scan circles (D=5°-20°) in the sky modulating atmospheric emission. Center elevation ranges between 30° and 80° depending on cryostat tilt.

Cryostat tilt = 0° PT tilt = 40° Min. elev. = 20° Max. elev. = 40°

Cryostat tilt = 20°

PT tilt = 20°

Cryostat tilt = 40° PT tilt = 0° Min. elev. = 60° Max. elev. = 80°

COSMO measurement timing

Exploits the availability of fast detectors (Kinetic Inductance Detectors - KIDs) and the know how of racing cars to beat atmospheric noise

interferogram scan fast		
maximum wavenumber (Nyquist)	20	cm-1
sampling step	0.0125	cm
resolution	6	GHz
resolution	0.200	cm-1
number of frequency samples	100	
number of samples in double-sided interferogram	256	
time to complete an interferogram	0.064	s
interferograms per second	15.6	
mirror scan mechanism period	0.13	S
sky scan slow		
circle radius	5	deg
circle length	31.4	deg
beam size	0.5	deg
number of samples per circle (3 per beam)	188	
time per beam	0.192	s
time for 2 sky dips (downwards + upwards)	36.19	s
wedge mirror rotation rate	1.66	rpm
sky stability required for	18.10	S

- This configuration requires a fast cryogenic mirror scanning mechanism
- High dissipation in the cryo system

detector performance			
detector time constant 5.		DE-05 s	
5 time constants	2.50	2.50E-04s	
NET		100 uK/sqrt(Hz)	
noise per sample	6.3 mK		
sky scan fast			
circle radius			5 deg
circle length		31.4 deg	
beam size			1deg
number of samples per circle (3 per beam)		<u>c</u>	94
time per beam		2.50E-0)4 s
time for 2 sky dips (downwards + upwards)		2.36E-0)2 s
wedge mirror rotation rate		254	16 rpm
interferogram scan slow			
maximum wavenumber (Nyquist)		2	20cm-1
sampling step		0.012	25 cm
resolution			6 GHz
resolution		0.20	00 cm-1
number of frequency samples		10	00
number of samples in double-sided interferogram		25	56
time to complete an interferogram		6.03	32 s
interferograms per second		0	.2
mirror scan mechanism period		12.0	06 s
sky stability required for		6.0	3s

- This configuration requires a fast roomtemperature mirror rotation device
- Not impossible.

COSMO window emission

- Window (& mirror) common mode emissions must be measured and removed with high accuracy.
- Special calibration procedure based on the comparison of the emission from 1 or 2 windows stacked.
- PhD thesis, Lorenzo Mele
- Preliminary results:

Another naive simulation

- Retreive all the interferograms at all different elevations, and Fourier transform them to obtain the measurements of the specific spectral brightness at all elevations. This is a very fast *sky-dip* measurement.
- The atmospheric contribution depends on the optical depth and on the temperature profile.
- For a naive single isothermal layer, the measured brightness at elevation *e* is

$$B(v, e) = B(T_{atm}, v) (1 - e^{-\tau(v, e)}) + B_{sky} e^{-\tau(v, e)} - B(T_{ref}, v).$$

• which can be rewritten B(v, e) = a(v)x(v, e) + b(v)

• where
$$x = 1 - \exp(-\tau_z (v)/\cos(e))$$
$$B_{sky}(v) - B(T_{ref}, v) = a(v)$$
$$B(T_{atm}, v) = b(v) + a(v)$$

- So, for each frequency, a simple linear fit will provide the measurement of the sky brightness, with atmospheric emission removed.
- Since the length of the data record used for this procedure is very short (few seconds) slowly fluctuating atmospheric emission is continuously removed.
- The SNR of this determination will be low, but many measurements can be stacked to gain SNR for the monopole of sky emission.

COSMO sky / atmosphere scan simulations

COSMO sky / atmosphere scan simulations

COSMO sky / atmosphere scan simulations

COSMO implementation

- As of today, we are in the *instrument design* phase
 - PNRA proposal funded to provide cryogeinc system, optics, and logistic support for the Concordia base (PI Silvia Masi, partner institutions UniMI (Mennella), UniMIB (Zannoni))
 - PNRA proposal funded to support development of KID detector arrays and coupling optics (PI Elia Battistelli, partner institutions CNR-IFN (Castellano), UniMI, UniMIB)
 - PRIN proposal submitted to support development of optical design and construction of the cryogenic interferometer (PI P. de Bernardis, partners CNR-IFN (Cibella), UniMI, UniMIB)
 - Additional partner Cardiff University
- International interest expressed from other international institutions ... the experiment is gaining momentum.

COSMO Martin-Puplett interferometer: implementation ideas window Thermal & Low Pass filters stack 220 mm aperture Reference blackbody

Drawings: G. D'Alessandro

COSMO Martin-Puplett interferometer: implementation ideas

Cryogenic scanning mirror (spectral modulation, slower than sky dip)

- Max mechnical range = -10 mm ... + 40 mm corresponding to max 3.75 GHz resolution
- Max scanning Speed 7 mm/s i.e. one interferogram in 6 s (atmospheric stability)
- Voice coil actuator, low power dissipation on cryogenic system
- LVDT position sensor, 5 μ m resolution at maximum speed

Kinetic Inductance Detectors

See Paiella et al. JCAP (2019) and Masi et al. Submitted to JCAP (2019)

COSMO's successor: a balloon-borne (ULDB) instrument ?

COSMO's successor: a balloon-borne instrument ?

- LSPE LDB payload http://planck.roma1.infn.it/LSPE
- Works in the polar night
- Suitable cryogenic system
- Possible to add (slower ?) modulator, if needed
- Might gain a factor 10.

COSMO on a balloon:

Conclusions

- COSMO is a first attempt to measure CMB monopole spectral distortions from the ground.
- It beats atmospheric noise and measures atmospheric emission using fast modulation and detectors. If this strategy is effective, the sensitivity is enough to measure the largest spectral distortion, arising from comptonization at recombination.
- It paves the way to more accurate measurements with the same approach, to be carried out on a stratospheric balloon.
- Can (and should) be complemented with low-frequency monopole spectral distortion measurements (e.g. TMS in Tenerife and/or evolutions)