OXFORD C-Band All-Sky Survey (C-BASS)

4th ASI/COSMOS Workshop: Ground-based CMB experiments, Milan, March 2019.

University of Oxford, UK

Angela Taylor, Mike Jones, Jamie Leech, Luke Jew, Richard Grumitt, Jaz Hill-Valler, Alex Pollak, Christian Holler (Hochschule München, Germany)

University of Manchester, UK

Clive Dickinson, Paddy Leahy, Adam Barr, Stuart Harper, Roke Cepeda-Arroita, Mike Peel

Caltech, USA

UNIVERSITY OF

Tim Pearson, Tony Readhead

South Africa

Justin Jonas (Rhodes/SKASA), Heiko Heligendorff, Moumita Aitch (UKZN), Cynthia Chiang, Jon Sievers (UKZN & McGill,Canada)

KACST, Saudi Arabia

Yasser Hafez

Moved on...

Oliver King, Matthew Stevenson, Mel Irfan, Stephen Muchovej, Joe Zuntz, Charles Copley

The University of Manchester

The C-BASS Survey

C-BASS - Overview

Sky-coverage	All-sky
Angular resolution	0.75 deg (45 arcmin)
Sensitivity	< 0.1mK r.m.s in 1 deg beam (confusion limited in I)
	6000 μK-arcmin @ 5GHz == 0.75 μK- arcmin @ 100 GHz, β = -3
Stokes coverage	I, Q, U, (V)
Frequency	1 (0.5) GHz bandwidth, centered at 5 GHz
Northern site	OVRO, California Latitude, 37.2 deg
Southern site	MeerKAT/SKA site, Karoo, South Africa Latitude -30.7 deg

OXFORD CBASS polarization sensitivity

CBASS simulations - *I*

CBASS simulations - *I*

CBASS simulations - *I*

CBASS simulations - **P**

CBASS simulations - **P**

CBASS simulations -*P*

C-BASS North Telescope

- 6.1-m dish, with Gregorian optics
- Secondary supported on foam cone
- Receiver sat forward of the dish
- Very clean, circularly-symmetric optics
- Absorbing baffles to minimize spillover

OXFORD C-BASS North: beam measurements

(see Holler et al. 2011, arXiv:1111.2702v2)

C-BASS South Telescope

- CBASS South at Klerefontein, Karoo desert, South Africa (SKA support site)
- 7.6m ex-telecoms dish
- Cassegrain optics
- Similar receiver to north but frequency resolution (128 ch)

C-BASS Receiver

Both receivers use correlation polarimeter and continuous comparison radiometer:

- Correlate RCP & LCP \rightarrow Q, U
- Difference RCP & LCP separately against internal load \rightarrow I, V

C-BASS North Receiver

- Analogue polarimeter/radiometer all done with hybrids and diodes...
- Sky and load signals separated post-amplification, squared and differenced gives *I* relative to loads
- RCP and LCP complex multiplied gives Q + iU

C-BASS South Receiver

- Digital system in two bands:
- Downconversion to 0 0.5, 0.5 1 GHz
- Sample at 1 GHz, channelise to 64 channels ($\Delta v=0.07$ GHz), calibrate gains
- Square and difference sky and load $\rightarrow I$; correlate RCP, LCP $\rightarrow Q$, U

Scan Strategy

- 360 deg azimuth scans at elevation of poles + 10, 30, 40, 50
- Scan as fast as possible: ~4 deg/s
- One scan ~ 90 s
- Use 5 slightly different scan speeds so fixed frequency contaminants ≠ same sky modes

CBASS-N: *Intensity*

- Night-time only data.
- All elevations (37,47,67 & 77 deg elevation)
- (Highly non-linear colour scale to show ~10,000:1 dynamic range features)

CBASS-N: Intensity Sensitivity

408 MHz - 5 GHz – 23 GHz

This map is a three-colour image

- RED: Haslam et al 408 MHz map
- GREEN: C-BASS I map
- BLUE: WMAP (K-CMB) band ~ high-v diffuse emission with the CMB removed.
- Colours balanced such that temperature spectrum of index -2.7 would appear white.

408 MHz - 5 GHz – 23 GHz

3-colour map of NCP Region

Clearly see purple AME 'by eye'

Full template-fitting analysis in:

Dickinson et al., MNRAS, 2019

Mon. Not. R. Astron. Soc. 000, 1-18 (2014) Printed 3 March 2019 (MN 18TEX style file v2.2)

The C-Band All-Sky Survey (C-BASS): Constraining diffuse Galactic radio emission in the North Celestial Pole region

C. Dickinson,^{1,2*} A. Barr,¹ H. C. Chiang,^{3,4} C. Copley,^{5,6,7} R. D. P. Grumitt,⁷ S. E. Harper,¹ H. M. Heilgendorff,⁴ L. R. P. Jew,⁷ J. L. Jonas,^{5,6} Michael E. Jones,⁷ J. P. Leahy,¹ J. Leech,⁷ E. M. Leitch,² S. J. C. Muchovej,² T. J. Pearson,² M. W. Peel,^{8,1} A. C. S. Readhead,² J. Sievers,^{3,9} M.A. Stevenson,² Angela C. Taylor,⁷

408 MHz: synchrotron?

CBASS 5GHz: synchrotron

23 GHz: synchrotron + AME? IRIS 100 μ m: thermal dust

Point Source Detection

- GB6 provides positions of all likely 5GHz sources in the C-BASS map.
- We have also independently detected point sources.
- Compared both catalogues.

UNIVERSITY OF

- Provides a point source mask for C-BASS analyses
- Also a useful tool for looking at e.g. variability and polarization properties

(Grumitt et. al. in prep)

OXFORD CBASS-N: Polarized Intensity

C-BASS P all elevations

CBASS N – Pol Sensitivity

OXFORD Polarized spectral indices 5 -30 GHz

$\mathbb{P}^{\text{UNIVERSITY OF}}$ Real variations in polarized $\beta(1)$

Distribution of b vs error on β - Dashed lines indicate 1-, 2- σ deviations from mean

Adjacent regions with low s_b but very different β

\bigcirc OXFORD Real variations in polarized β (2)

(a) $N_{\rm side} = 16$

(see Luke Jew, Dphil Thesis, https://ora.ox.ac.uk/objects/uuid:31f0227a-84be-421a-ae46-eebe9f422767)

C-BASS N – Q & U Maps

© OXFORD CBASS N: Pol angle calibration

- Primary calibrator is Tau A
- We currently use WMAP measured TauA polarization angle at 30-90 GHz (-88deg, Weiland et al., 2011)
- Correct for Faraday rotation between WMAP and C-BASS (~4deg)
- Cross-check with WMAP/Planck pol. angle correlation

Absolute Polarization Cal

- We have (attempted!) to make an absolute polarization angle measurement of TauA using C-BASS S + ground-based transmitter.
- Still analyzing the data, but should give an accuracy of ~0.1deg.

NIVERSITY OF

E and B Maps

OXFORD EE & BB angular power spectra

0.60

0.55

0.50

0.45

0.40

10

15

25

Galactic lat cut, deg

20

35

40

30

Amplitude BB/EE

• Fit BB and EE with:

•
$$D_l = A \left(\frac{l}{80}\right)^{\alpha} \rightarrow A^{BB}/A^{EE} \sim 0.5$$

• Next steps – predicting level of synch contamination for B-mode CMB ...

Summary

- C-BASS-N data being analysed first results/papers imminent...
 - Northern sky intensity map
 - Template fitting, TT, spectral index analysis, Commander analysis
 - Point source catalogue/mask
 - Polarized intensity + map spectral indices + cross-spectra
 - E & B maps/spectra and impact for CMB
- C-BASS-S continuing to observe needs at least 12-18 months data.

C-BASS S, Karoo Desert, South Africa

Thank you

https://cbass.web.ox.ac.uk